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LOW-STORAGE, EXPLICIT RUNGE-KUTTA SCHEMES FOR THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS

CHRISTOPHER A. KENNEDY�, MARK H. CARPENTERy , AND R. MICHAEL LEWISz

Abstract. The derivation of low-storage, explicit Runge-Kutta (ERK) schemes has been performed in the

context of integrating the compressible Navier-Stokes equations via direct numerical simulation. Optimiza-

tion of ERK methods is done across the broad range of properties, such as stability and accuracy e�ciency,

linear and nonlinear stability, error control reliability, step change stability, and dissipation/dispersion accu-

racy, subject to varying degrees of memory economization. Following van der Houwen and Wray, 16 ERK

pairs are presented using from two to �ve registers of memory per equation, per grid point and having

accuracies from third- to �fth-order. Methods have been assessed using the di�erential equation testing

code DETEST, and with the 1D wave equation. Two of the methods have been applied to the DNS of a

compressible jet as well as methane-air and hydrogen-air ames. Derived 3(2) and 4(3) pairs are competitive

with existing full-storage methods. Although a substantial e�ciency penalty accompanies use of two- and

three-register, �fth-order methods, the best contemporary full-storage methods can be nearly matched while

still saving two to three registers of memory.
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1. Introduction. Direct numerical simulation (DNS) of the compressible Navier-Stokes equations is a

means by which researchers may numerically probe the full range of scales in high-speed/fast-time-scale uid

behavior. Compressible DNS seeks to resolve all physically relevant time and length scales associated with

phenomena such as turbulence, sound generation, and/or chemical reaction. Resolution of these phenomena

is likely to require strict temporal error tolerances. The correspondingly accurate spatial discretizations

involving possibly billions of grid points then �ll the available memory of the computer. Hence, memory

management of the time integrator is an important matter for DNS. The combination of high accuracy and

low memory use potential for explicit Runge-Kutta (ERK) schemes makes them ideal for compressible DNS

application.

E�orts to reduce computer memory usage during numerical integration of ordinary di�erential equations

(ODEs) have received sporadic attention in the past.[14, 27, 30, 56, 67, 90] For users confronted with severe

computer storage constraints, established high-order methods such as the DOPRI5[21] may be prohibitively

costly. Currently in the uid dynamics community, users of ERK methods seeking to reduce memory usage

have chosen to implement either a Williamson[87] scheme[25, 32, 64] or a van der Houwen[41, 42] (vdH)

method.[4, 81] Williamson and vdH methods are both so called \2N" schemes, where N is the number of

equations being integrated times the number of grid points.
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When solving the equation

dU

dt
= F (t; U (t))(1.1)

with an s-stage ERK method, a cavalier implementation requires the storage of the original U�vector,

an intermediate U�vector, and all s function evaluations. Williamson implicitly assumes that it is only

necessary to be concerned with the memory requirement of a U�vector, what is in e�ect a dU�vector, and

that the memory requirement of F is inconsequential. Loosely, he implements the strategy over a single

intermediate stage as

dU (j) = AjdU
(j�1) + (�t)F (j)

U (j) = U (j�1) + BjdU
(j);

(1.2)

where Aj and Bj are functions of the standard Butcher coe�cients, F (j) and U (j) are the jth intermediate

values of the function evaluation and the integration vector, and �t is the step size. Note that U , dU , and

F must be stored. Unless work is done in a piecemeal fashion, three storage registers per variable will be

required for the Williamson scheme. These methods have been referred to as 2N schemes.

Wray[90], employing van der Houwen's technique, places a set of conditions the scheme must satisfy

that are more restrictive than Williamson's. Van der Houwen and Wray devise a scheme where information

alternates between the two available storage registers at each successive ERK stage. The procedure is loosely

written over two intermediate stages as

(Register 1) U (j+1) = X(j) + (aj+1;j)�tF (j)

(Register 2) X(j+1) = U (j+1) + (bj � aj+1;j)�tF (j)

(1.3)

(Register 2) U (j+2) = X(j+1) + aj+2;j+1�tF (j+1)

(Register 1) X(j+2) = U (j+2) + (bj+1 � aj+2;j+1)�tF (j+1):

By overwriting, the U , F , and X vectors never fully coexist. The symbols aij and bj are the ordinary Butcher

coe�cients of the scheme. The X vector may be thought of as a vehicle to bring information from previous

stages into the current stage. To distinguish these methods from the Williamson class of 2N schemes, we

will refer to them as 2R schemes.

The primary di�erence in philosophy between the two methods is that in the vdH scheme, during the

function evaluation, the previous solution vector is overwritten. Clearly there will be cases where this

is not acceptable. Compressible DNS provides a situation where this method may be pro�tably utilized.

This circumstance occurs because the U�vector contains, principally, variables which are the products of

variables needed to evaluate the ux terms. Consequently, the U�vector must be decomposed into other

variables, leaving the U�vector itself disposable. Both Williamson (2N) and vdH (2R) schemes may be

easily generalized to accommodate more than two storage registers (N or R). We make no claim that these

two strategies are the only viable ones. We do suggest, however, that the vdH methodology is extremely

aggressive in its conservation of computer memory usage.

In the pursuit of computer memory use reduction, the �rst casualty is the retention of the U�vector at

the beginning stage. Error control, in the more traditional sense, becomes impossible. A rejected step (such

as violation of the error tolerance) cannot be restarted from U (n) because with a 2N or 2R scheme, U (n) is

no longer available. Instead, alloting one additional register for an error estimate, one may monitor the error
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occuring at each step and determine an appropriate next step. Including yet another register, U (n) could

be retained so that action could be taken on a step which exceeds the predetermined error bound. This

additional register approach, however, undermines the fundamental premise of this work and should not be

used unless all other approaches fail. Schemes in this paper that can be used in error monitoring/control

mode are designated 2R+, etc., schemes because, if used in this mode, they require extra storage. Details

of this implementation are contained in Appendix A. If overwriting is impossible, then the implementation

must be modi�ed and an extra storage register will be required.

The goal of this paper is to derive broadly optimized, minimal-storage (2R+, 3R+, 4R+, and 5R+)

ERK schemes based on only the vdH methodology and to explain how they are implemented. Choices

are o�ered for storage reduced methods that address the needs of stability e�ciency, accuracy e�ciency,

linear stability, nonlinear stability, dissipation and dispersion minimization, time-step/error control, and

step-control stability. Invariably users will investigate physical phenomena that require di�erent integrator

properties, di�erent error tolerances, and have di�erent computer memory allocations. Hence, many good

schemes are presented along with a rational basis by which to choose a scheme depending on one's needs.

Based on the existing literature, the uid dynamics community has been the largest customer for these

low-storage schemes. For this reason (as well as personal research interests), optimization of ERK schemes is

made with an eye towards the Navier-Stokes equations. Flows which are strongly viscous or chemically sti�

may not be good candidates for these explicit methods. In addition, integrating the di�erential-algebraic

equations arising from the discretization of the incompressible or low Mach number equation set with an

ODE-ERK method must be done with great caution so as to avoid drift-o� and/or order reduction.

A recurring criticism that accompanies use of high-order ERK schemes for discretized partial di�erential

equations (PDEs) is the boundary \order reduction" phenomenon.[1, 13, 47, 49, 61, 66] Without proper

care, order reduction occurring at the spatial boundaries can dominate the solution accuracy throughout

the entire domain. The impact of the order reduction becomes more pronounced with increasing temporal

accuracy. As such, the new schemes presented in this paper will be more susceptible to this problem than

either Williamson's or Wray's third-order schemes.

A second concern is that Runge-Kutta methods may seek out spurious �xed points of the di�erential

equations being integrated. Methods exhibiting this behavior are called irregular.[2, 38, 78, 80, 83] All ERK

methods greater than �rst-order accurate are irregular. We rely on error control and the fact that many

equations are being integrated simultaneously to avoid spurious �xed points.

Finally, we largely forsake aesthetic or \nice" coe�cients (ones with simple, rational numbers) because

the bene�t from using a substantially more e�cient integrator over hundreds of simulations, each taking

tens or hundreds of hours, far outweighs the inconvenience of typing in twenty or so complicated coe�cients

correctly. Most solutions that are presented within this paper have been found numerically with established

mathematical software.[18, 28, 29, 58, 88] Attempts were made to solve for schemes symbolically, but it was

found that the assumption of various aij = bj quickly made matters intractable because the equations of

condition become algebraically nonlinear in the bi's. Scheme coe�cients are given to at least 25 digits of

accuracy.

Some ERK background is necessary to facilitate a discussion on the optimization of accuracy e�ciency,

stability e�ciency, error control reliability, step-control stability, linear stability, nonlinear stability, and

dispersion and dissipation error within the context of storage reduction in later chapters. This will be done

in sections 1 and 2. Two-register schemes will be reviewed in section 3 while three-, four-, and �ve-register

schemes will be considered in sections 4, 5, and 6. Merits of the low-storage schemes are discussed in section
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7, and comparisons are made with more traditional, full-storage ERK methods. In section 8, conclusions

are drawn as to the utility of the various schemes. Appendices listing an implementation strategy and the

relevant equations of constraint are also included.

2. Background. We cannot hope to review the extensive body of Runge-Kutta literature germaine to

integrating the Navier-Stokes equations. Therefore we tersely describe only those areas of literature that are

crucial to the development of the new schemes being presented. For further details, appropriate references

are provided.

The compressible Navier-Stokes equations constitute a coupled set of partial di�erential equations that

may be spatially discretized into a set of coupled ODEs with �nite-di�erence techniques by the method of

lines. We are concerned with the numerical solution of the initial value problem

dU

dt
= F (t; U (t)) ; U (a) = U0; t 2 [a; b];(2.1)

where U = (�; �u; �e0; �Yi)
T is a function of the uid density, �, velocity vector, u, total speci�c internal

energy, e0, and species mass fraction, Yi. F contains the inviscid, viscous, reactive, and, possibly, body force

terms of the compressible Navier-Stokes equations.

Temporal discretization of the Navier-Stokes equations can be made with an s-stage ERK scheme, which

may include an embedded error control scheme within the s-stage procedure. The implementation over a

time step �t, from time level t(n) to time level t(n+1), is accomplished as

F (i) = F (i)
�
t(i); U (i)

�
; U (i) = U (n) +�t

Pi�1
j=1 aijF

(j); t(i) = t(n) + ci�t;

U (n+1) = U (n) + �t
Ps

j=1 bjF
(j); Û (n+1) = U (n) + �t

Ps

j=1 b̂jF
(j);

(2.2)

where U (n) = U (1) = U (t(n)) and U (n+1) = U (t(n)+�t) are the solutions at time levels n and n+1 of order

q = p + 1 and Û (n+1), the U�vector associated with the embedded scheme, is of order p. The particular

Butcher coe�cients aij, bi, b̂i, and ci of the respective schemes are constrained by certain equations of

condition, a short list of which may be found in appendix B. In reading these conditions we remark that for

a qth-order ERK, the kth equation of condition may be considered as[9, 35]

�
(q)
k =

1

�
�(q)
k �

�

q!
;(2.3)

which de�nes �
(q)
k , a scalar sum of Butcher coe�cient products that will appear throughout this paper.

Both � and � vary with q and k. The �̂
(q)
k conditions are identical to �

(q)
k conditions with b̂i replacing bi.

We assume that the standard row-sum condition applies: ci =
Ps

j=1 aij. Extensive discussions of explicit

Runge-Kutta methods may be found in the literature.[9, 21, 24, 35, 54, 69] Our style in this paper closely

follows Dormand et al.[20] Schemes will be referred to as RKq(p)s[rR,nN+]Xf qdisp ; qdiss g, where q is the

order of the main scheme, p is the order of the embedded scheme, s is the number of stages, r=n is the

number of registers used (vdH/Williamson), + denotes that extra storage registers will be needed for error

monitoring/control, X denotes either C (linear stability-error compromise), S (maximum linear stability), F

(FSAL - �rst same as last), M (minimumtruncation error), N (maximumnonlinear stability - contractive), or

P (minimumphase error), and for \P" methods, qdisp and qdiss are the respective dispersion and dissipation

orders of accuracy.
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2.1. Error and Error Control. Error in a qth-order explicit Runge-Kutta scheme may be quanti�ed

in a general way by taking the L2 and L1 principal error norms,[62, 86]

A(q+1) = k� (q+1)k2 =

vuutnq+1X
j=1

�
�
(q+1)
j

�2
; A(q+1)

1
= k� (q+1)k1 = Maxfj�

(q+1)
j jg;(2.4)

where �
(q)
j are the nq = f1; 1; 2; 4;9; 20; 48; 115;286g error coe�cients associated with order of accuracy

q = f1; 2; 3; 4; 5;6;7; 8; 9g. For embedded schemes of accuracy p, additional de�nitions are useful, such as

Â(p+1) = k�̂ (p+1)k2 =

vuutnp+1X
j=1

�
�̂
(p+1)
j

�2
;(2.5)

B(p+2) =
Â(p+2)

Â(p+1)
=

k�̂ (p+2)k2
k�̂ (p+1)k2

=

rPnp+2
j=1

�
�̂
(p+2)
j

�2
rPnp+1

j=1

�
�̂
(p+1)
j

�2 ;(2.6)

C(p+2) =
k�̂ (p+2) � � (p+2)k2

k�̂ (p+1)k2
=

rPnp+2
j=1

�
�̂
(p+2)
j � �

(p+2)
j

�2
rPnp+1

j=1

�
�̂
(p+1)
j

�2 ;(2.7)

D = Maxfjaijj; jbij; jb̂ij; jcijg;(2.8)

E(p+2) =
A(p+2)

Â(p+1)
=

k� (p+2)k2
k�̂ (p+1)k2

=

rPnp+2
j=1

�
�
(p+2)
j

�2
rPnp+1

j=1

�
�̂
(p+1)
j

�2 :(2.9)

One may also consider Â
(p+1)
1 , B

(p+2)
1 , C

(p+2)
1 , and E

(p+2)
1 . All embedded schemes considered here are

applied in local extrapolation mode; i.e., the solution is advanced with the higher - order formula. For

a given order of accuracy, one strives to reduce A(q+1) to as small number as possible. Both B(p+2) and

C(p+2) should be of order unity. The maximum magnitude of any of the Butcher coe�cients, D, should

be small, but may approach 20 in some high-quality pairs.[72] Shampine[68] recommends B(p+2) < 1:5 and

E(p+2) < 0:5. Although these error measures are independent of the equations being integrated and hence

only an approximate error metric, they will be used to select the \best" scheme. Verner[85] points out that

strictly relying on only A(q+1), B(p+2), and C(p+2) may not be adequate to distinguish among several good

schemes. He also presents A
(q+1)
1 , Â(p+1)

1 , B(p+2)
1 , and C

(p+2)
1 . In another paper, Verner[84] recommends

that � (q+1) should generally not vanish. Although not as frequently mentioned as the above parameters, the

ratio of A(q+2)=A(q+1) is sometimes controlled. For 5(4) pairs, Sharp and Smart[72] choose 5/2, Bogacki and

Shampine[6] limit it to 10, while Papakostas and Papageorgiou[60] use 25. The risk of allowingA(q+2)=A(q+1)

to grow too large is that the error controller may become less reliable at lax tolerances. Additionally, we

require that all �̂
(p+1)
j 6= 0 to avoid a defective embedded method, i.e., Rz = 0. The stability domain of the

embedded method is designed to be nearly as large as that of the main method to avoid instability in the

embedded method at large step sizes.

FSAL techniques, where asj = bj, allow for the use of not only all function evaluations during an

e�ectively s-stage computation, but also use F (n+1). After U (n+1) and F (n+1) are evaluated, Û (n+1) is

computed with s + 1 function evaluations. The principal motivation for doing this is that it allows more

latitude in the design of the method and usually results in better schemes. The high stage numbers found
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in low-storage schemes make FSAL relatively less advantageous. Dense output via Runge-Kutta triples is

forsaken here because there is little apparent interest within the DNS user community for such a feature.

It may, however, �nd use if users seek global error estimates.[3] Pseudosymplectic or low-drift methods are

also forsaken.

2.2. Linear Stability. The stability function[36] for ERK methods is given by

R(z) = Det [�ij � (aij � eibj)z] ;(2.10)

= 1 + �
(1)
1 z + �

(2)
1 z2 + �

(3)
2 z3 + �

(4)
4 z4 + �

(5)
9 z5 + � � �+ �(s)

ns
zs;(2.11)

with e = f1; 1; � � �; 1g, �ij is the identity matrix, �
(i)
ni

are the \tall trees," and z contains information

(eigenvalues) describing the equations being integrated. It is convenient in uid dynamics to consider linear

stability in the context of the prototypical, one-dimensional, convection-di�usion equation

@U

@t
=

�
�a

@

@x
+ �v

@2

@x2

�
U;(2.12)

where a is a convection or sound velocity and �v is a di�usivity[48] (mass, momentum, or energy). Other

studies of stability of ERK methods applied to the compressible Navier-Stokes equations have been conducted

by Sowa[75] and M�uller.[59] If the spatial derivatives are considered as high-order, centered, �nite-di�erence

operators then the Fourier image of the convection-di�usion equation becomes

z = ��	 + �v	
2;(2.13)

	 =
i [2a sin(�) + 2b sin(2�) + 2c sin(3�) + � � �]

[1 + 2� cos(�) + 2� cos(2�) + � � �]
:(2.14)

In this expression � = a�t
�x

and �v =
�v�t
(�x)2 are the inviscid and viscous CFL numbers, �x is the local spatial

grid spacing, �t is the magnitude of one time step, 0 � � � � is the spatial wavenumber, 	 is the Fourier

image of the �rst derivative operator, and fa, b, c, �, �g are coe�cients of the derivative operator used in

evaluating the convection-di�usion equation. As the \compact" sixth-order derivative operator is popular in

compressible DNS, these last coe�cients will be set to f7/9, 1/36, 0, 1/3, 0 g.[48]

A stable method has jR(z)j < 1 at a particular value of z or for all wavenumbers at the pair (�; �v).

This requirement is necessary but may not be su�cient.[33, 50, 65] Unlike many contemporary ERK pairs,

imaginary axis stability is a high priority to the methods designed in this paper. The derived linear sta-

bility domains, in terms of (�; �v), are a strong function of which derivative operator is chosen. Reducing

truncation error of the spatial derivative operator reduces the extent of the linear stability regime. Use of

the corresponding second derivative operator rather than repeated use of the �rst derivative operators for

the viscous terms reduces the maximum viscous CFL number. Nevertheless, determining linear stability

as previously described gives results representative of a broad class of numerical methods used for DNS of

compressible ows.

2.3. Step Control Stability. We consider two step-size control strategies:[34, 36, 37]

(�t)(n+1) = �(�t)(n)
�

�

jj�(n+1)jj1

��

;(2.15)

(�t)(n+1) = �(�t)(n)
�

�

jj�(n+1)jj1

���
jj�(n)jj1

�

��

;(2.16)

where � is some chosen integration error tolerance, � � 0:9, and �(n+1) = U (n+1) � Û (n+1). The �rst and

most common method, Eq. (2.15) is an example of an integral feedback (I-) controller. The second, more
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sophisticated, Eq. (2.16) adds a proportional feedback component and is called a PI-controller. Following

Hairer and Wanner,[36] we de�ne

R(z) = 1 +
sX

i=1

�(i)
ni
zi; E(z) =

sX
i=p+1

�
�(i)
ni
� �̂(i)

ni

�
zi; u = <

�
R0(z)z

R(z)

�
; v = <

�
E0(z)z

E(z)

�
;(2.17)

as well as the matrices

C =

 
1 u

�� (1� �u)

!
; ~C =

0
BBBB@

1 u 0 0

�� (1� �u) � �v

1 0 0 0

0 1 0 0

1
CCCCA :(2.18)

In the case of the C-matrix corresponding to Eq. (2.15), � = (p+1)�1. For ~C corresponding to Eq. (2.16), we

set � = 0:7=p and � = 0:4=p where p is the order of the embedded method. If at the regions where jR(z)j = 1

the spectral radius of C or ~C is less than unity, then the step-size control mechanism is said to be SC-stable.

As DNS runs are often made near the linear stability limits of the integrator, step-size change oscillations

may result and give rise to a rapid accumulation of global error during oversteps. Still more involved would

be a PID-controller, which we do not use. The PID-controller is obtained by multiplying the RHS of Eq.

(2.16) by
�
�=jj�(n�1)jj1

	
and creating a 6� 6 matrix �C which has the elements ~Cij = �Cij; i; j = 1; 2; 3; 4,

�C25 = �, �C26 = �v, and �C53 = �C64 = 1, with all remaining elements being zero.

2.4. Dispersion and Dissipation Error. Dispersion and dissipation of ERK methods[10, 44, 45] may

be considered by taking the derivative of U = ei!t with respect to time, dU=dt = i!U , where ! is a temporal

wavenumber (frequency). The stability function for this ODE has the argument i� where � = !(�t). An

ERK method where R and I, respectively, are the real and imaginary parts of R(i�) is said to be dispersive

of order qdisp and dissipative of order qdiss if

�(�) = � � arg (R(i�)) = � � arctan

�
I

R

�
=

2j+1X
j=0

�2j+1�
2j+1 = O(�qdisp+1);(2.19)

�(�) = 1� jR(i�)j = 1�
p
R2 + I2 =

2jX
j=0

�2j�
2j = O(�qdiss+1):(2.20)

Hence R(i�) = R + iI = (1� �(�)) ei(���(�)). Some authors refer to the phase-lag order of the method,

which, in our notation, would be (qdisp; qdiss � 1). Control of both spatial and temporal dissipation and

dispersion in acoustics applications has employed ERK methods satisfying only quadrature[46, 92] and

subquadrature[93] order conditions. Applied to nonlinear problems like the Navier-Stokes equations, these

methods will generally not exceed second- and third-order accuracy, respectively.

2.5. Nonlinear Stability. Nonlinear stability of Runge-Kutta methods[53] focuses on the discrete

analog to dissipativity of F (t; U (t)) in some given norm,

jj~U(t+�t)� U (t +�t)jj � jj~U(t) � U (t)jj;(2.21)

where ~U is a perturbed approximation to U and F (t; U (t)) belongs to any one of the four function classes:

linear (L) or nonlinear (F) and dissipative in an inner product or maximumnorm. For ERK methods,[15, 52,

53, 55, 91] the dissipativity criterion is replaced with the so-called circle-condition, and maximum step-sizes

are related to a contractivity threshold: the largest possible step-size that ensures jj~U (n+1) � U (n+1)jj �

7



jj~U (n)�U (n)jj. A radius of conditional or circular contractivity for the four function classes may be denoted

rF1 , rL1 , rF2
, rL2 where rF1� rL1� rL2 and rF1� rF2

� rL2 . We will call a method (conditionally)

contractive if at least rF2
> 0.

Kraaijevanger[52] (F1) and Dahlquist and Jeltsch[16] (F2) have shown that no ERK method has rF > 0

and is greater than fourth-order accurate. Maximum norm contractivity is closely related to positivity.[39]

Positivity is particularly appealing because it ensures that physical quantities such as temperature and

species concentrations remain forever nonnegative. The radius of positivity is the same as the radius of

maximum norm contractivity.

To determine rF2
we �rst de�ne the matrices[16] Mij = biaij + bjaji � bibj , Bij = diagfb1; b2; � � � ; bsg,

and Mil = B
�1=2
ij MjkB

�1=2
kl . If bi > 0, then rF2

= � 1
�M
min

where �Mmin is the smallest eigenvalue of the

matrix Mil. A nonvanishing value of rF1requires that bi > 0, aij � 0, and the Runge-Kutta K-function,

K(Z) = det[I � (A� ebT )Z], is absolutely monotonic on [�rF1 , 0] where Z = fz1; z2; � � � ; zsg. K(Z) is said

to be absolutely monotonic at a point � if[52]

@i1+i2+���+isK(�; �; � � � ; �)

@zi11 @z
i2
2 � � �@ziss

� 0:(2.22)

In the case of ERKs, each ij may be equal to either 0 or 1. The largest magnitude of � on the negative

real - axis for which these 2s inequalities hold is denoted �rF1 . Alternatively for ERKs, one may enforce

nonnegativity of

R(�); A(�) = A(I � �A)�1; B(�) = bT(I� �A)�1; E(�) = (I� �A)�1e;(2.23)

at � = �rF1where e = f1; 1; � � � ; 1g, b = bi, and A = aij. Assuming that bi > 0, aij � 0, these present

1, (s � 2)(s � 1)=2, (s � 1), and (s � 1) inequalities, respectively, or s(s + 1)=2 in total. It should be noted

that the region of circular contractivity is a circle located at z = �r with radius rF1or rF2 , whichever is

appropriate. This implies the property is likely most useful for parabolic rather than hyperbolic equations.

For comparison purposes we follow Dahlquist and Jeltsch and write rL2 = rs, the corresponding radius of

the linear problem in an inner product norm,[57] i.e., the largest circle centered on the negative real - axis,

fully contained in the left half-plane, that �ts within the region where jR(z)j = 1. The linear analog of

rF1 is rL1 . The stability function, R(Z), is said to be absolutely monotonic at a point � if[53] @iR(�)=@zi

� 0, i = 0; 1; 2; � � � ; s. The largest magnitude of � on the negative real - axis for which all of these s + 1

inequalities hold is denoted �rL1 . Kraaijevanger[51] gives the maximum achievable rL1 per stage for an

m-stage method with order p, his optimal scaled threshold factors. We do not consider the internal stability

of ERKs.[42, 43] Nonlinear instability caused by spurious triad wave interactions[79] in the spatial domain

is outside the scope of this paper, but is probably best dealt with by using high-order �ltering.[48]

2.6. E�ciency. E�ciency of a given s-stage ERK scheme may be considered from two decidedly

di�erent perspectives. One philosophy assumes that temporal integration error is acceptable and seeks to

time step as briskly as possible. Simulations running on expensive supercomputers for hundreds of hours are

under great pressure to be integrated as quickly as possible. Alternatively, integration may be conducted at

some chosen maximum acceptable error. Virtually all DNS e�orts that these authors are aware of implicitly

subscribe to the former philosophy, due to computer resource limitations.

Stability-limited time stepping is the more primitive approach and only seeks to compare the relative

e�ciency of two schemes by using[69]

�(stab) =
�1
s1

�
�2
s2

��1
=

(�t)1
(�t)2

s2
s1
;(2.24)
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where � is understood to be either the inviscid or viscous CFL number and scheme 1 is most e�cient for

�(stab) > 1. This term compares the distance integrated per unit of work (evaluations of F (t; U (t)) = number

of stages) with no regard for the accuracy of integration and may be used to compare methods with arbitrary

orders of accuracy and numbers of stages. For viscously or reactively dominated problems this term could

be amended by replacing the CFL numbers with the respective rF2
or rF1of each scheme.

Relative e�ciencies of two qth-order schemes based on an error limited time stepping procedure might

best be measured by[40, 69]

�(acc) =
s2

s1

 
A
(q+1)
2

A
(q+1)
1

! 1
q+1

=
(�t)�1
(�t)�2

s2

s1
;(2.25)

where scheme 1 is most e�cient for �(acc) > 1. Slightly di�erent from �(stab), �(acc) compares the distance

integrated per unit of work at �xed integration error, (�t)�. We will consider the number of stages in a

FSAL method as the e�ective number of stages for e�ciency purposes. Obviously, for su�ciently large error

tolerances, large time steps might exceed the linear stability bounds. In comparing schemes with di�erent

orders of accuracy we cannot use this last metric and simply paraphrase Shampine[69]. For su�ciently small

error tolerances the higher order method is more e�cient, but this argument does not imply that the lower

order method is more e�cient for large error tolerances. Prince and Dormand[62] note that only on the

linear problem are lower order formulae sometimes preferable to higher order formulae. Sharp[71] �nds that

the higher-order methods are generally more accuracy e�cient on nonsti� equations.

The choice of which e�ciency measure should be used depends most strongly on what level of error is

acceptable to the user. This, in turn, depends on what physical phenomena are being sought through the

calculation. If integration at the linear stability limits produces su�ciently small error then, e�ciency is best

considered by using �(stab); otherwise �(acc) seems more appropriate. Spatial accuracy, another important

matter that we do not consider here, must also be addressed. Strict temporal error tolerances make little

sense without correspondingly strict spatial error tolerances. A future study on the spatial and temporal

accuracy/resolution requirements associated with particular physical phenomena would be of tremendous

utility to compressible DNS practitioners.

2.7. Simplifying Assumptions. Finally, in the course of designing several of the schemes in this

paper, resorting to Butcher[8, 36] simplifying assumptions will be useful. On occasion, assumptions

C(�) :
sX

j=1

aijc
q�1
j =

c
q
i

q
; i = 1; :::; s; q = 1; :::; �;(2.26)

D(�) :
sX

i=1

bic
q�1
i aij =

bj

q
(1� c

q
j ); j = 1; :::; s; q = 1; :::; �;(2.27)

will be invoked.
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3. Two-Register Schemes. An s�stage ERK method placed in two-register vdH format (see van der
Houwen[42], equation 2.2.4') takes on the Butcher array form

0

c2 a21

c3 b1 a32

.

.

.

.

.

. b2 a43

.

.

. b3 a54

.

.

.

.
.
.

.
.
.

cs bs�2 as;s�1

b1 b2 b3 � � � bs�2 bs�1 bs

and allows (2s� 1) degrees of freedom (DOF) to satisfy all constraints. In general, for an r-register method,

there will be r � s � r � (r � 1)=2 DOF available. Conversely, (s � r + 1) � (s � r)=2 DOF are sacri�ced for

low storage. Setting r = s, the basic ERK method is retrieved with s � (s + 1)=2 DOF.

3.1. Two-Stage, Second-Order: RK2()2[2R]. All two-stage, second-order ERKs may be used in

2R format. Minimum A(3) = 1=6 occurs at c2 = a21 = 2=3, b1 = 1=4, b2 = 3=4 with (rF2 , rF1) =

(0:791; 0:500). The maximally L1 contractive second-order method is Huen's method;[54] c2 = a21 = 1,

b1 = 1=2, b2 = 1=2 where rF2 = rF1= 1 and A(3) =
p
2=6. These are of only academic interest to the

compressible DNS community because when implemented with centered, �nite-di�erence methods on the

convection-di�usion equation, the methods are unconditionally unstable in the inviscid limit.

3.2. Three-Stage, Third-Order: RK3(2)3[2R+]. The general solution to the two-register, three-

stage, third-order vdH scheme has a one-parameter family of solutions along with two speci�c cases. These

are readily derived by following Lambert's[54] three cases. For the cases when c2 6= 0; 23 , or c3 and when

c3 6= 0, the one parameter, c3, family of solutions is obtained for

c2 =
4� 7c3 + 6c23 �

p
c23 (17� 60c3 + 84c23 � 48c33)

6 (1� 2c3 + 2c23)
;(3.1)

provided c2 is not complex. From this, Wray[90] suggests c3 = 2=3, yielding c2 = 8=15. Minimum principal

error norm for the RK3(2)3[2R+]M is found by solving @A(4)=@c3 = 0 for c3 by using the minus solution

above. The result is that the minima occurs at c3 � 81214816
120777641 where A(4) = 0:04412 and (rF2 , rF1)

= (0:521; 0:150). Maximum rF1occurs with RK3(2)3[2R+]N at c3 � 23833
37703 by using the plus solution where

A(4) = 0:05094 and (rF2 , rF1) = (1:127; 0:838). Asking for contractivity of the embedded methods had the

unfortunate consequence of increasing E(4) above optimal. The minimumprincipal error norm achievable for

any explicit RK3()3 is A(4) = 0:041809. Maximum radius of contractivity for the general RK3()3 is rF1= 1

or rF2 � 1:215. All RK3()3 methods have rL1= 1 and rL2 = 1:256.

In the two speci�c cases where c2 = c3 = 2=3 and b3 = 3=5, then A(4) = 0:04630 and (rF2 , rF1)

= (1:0; 0:6), and where c2 = 2=3, c3 = 0, b3 = (1 � p17)=8, both solutions have A(4) = 0:1326 and are

noncontractive. The former conuent solution admits only a defective embedded method. Stability limits of

all three-stage, third-order, ERK schemes are (�; �v) = (0:87; 0:63) when integrating the convection-di�usion

equation discretized with a sixth-order, tridiagonal, �rst-derivative operator.

3.3. Four-Stage, Third-Order: RK3(2)4[2R+]. Using two-registers over four stages allots degrees

of freedom. Enforcing third-order accuracy, � (k) = 0; k = 1; 2; 3, leaves three remaining DOF. For accuracy

e�ciency, RK3(2)4[2R+]C minimizes A(4) subject to �
(4)
4 = 1=24 in order to maximize linear stability

and dissipation order. The resulting scheme is 6% more accuracy e�cient than RK3(2)3[2R+]M, and has
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(�; �v) = (1:42; 0:70); this scheme is listed in Tables 1 and 4 and shown in Figure 3.1. For nonlinear

stability, RK3(2)4[2R+]CN seeks maximal rF1while achieving sixth-order dispersion error, �5 = 0, by setting

�
(4)
4 = 1=30. Of the maximum possible rF1= 2 for any RK3()4[52] with A(4) = 0:03608, RK3(2)4[2R+]CN

achieves rF1= 1:007 while keeping A(4) = 0:02870. As with the RK3(2)3[2R+]N, a contractive embedded

method drove E(4) to slightly greater than 1. If �
(4)
4 = 1=48, giving (�; �v) = (1:08; 1:30), rL1= 2 is possible

for RK3()4 methods.

3.4. Five-Stage, Fourth-Order: RK4(3)5[2R+]. Adding a �fth stage to a 2R-vdH scheme provides

nine degrees of freedom. Fourth-order accuracy may now be considered. Eight order-of-accuracy constraints,

� (k) = 0; k = 1; 2; 3; 4, leave one DOF to optimize linear stability while maintaining acceptable accuracy via

variation of �
(5)
9 . Tables 1 and 5 and Figure 3.1 give the �

(5)
9 = 1=206 solution, RK4(3)5[2R+]C, with

A(5) = 0:005121 and (�; �v) = (1:67; 1:21). Mated to this is an embedded scheme with �̂
(4)
4 = 1=28. We

were unable to �nd any contractive methods for the RK4(3)5[2R+] or phase-lag methods having reasonable

principal error norms. Setting �
(5)
9 = 1=240 gives (�; �v) = (1:62; 1:48) and the largest rL1 for the RK4()5

methods is 2.

3.5. Six-Stage, Fourth-Order: RK4(3)6[2R+]. As additional stages can sometimes make for more

e�cient methods,[72] one may consider an RK4(3)6[2R+] scheme with three residual DOF after satisfying

� (k) = 0; k = 1; 2; 3; 4. Searching for solutions uncovered RK4(3)6[2R+]Cwith A(5) = 0:002148 and (�; �v) =

(1:97; 1:18). Unfortunately both �(acc) and �(stab) are less than those of RK4(3)5[2R+]C. No attempt was

made to �nd a contractive solution. At �
(5)
9 � 1=159 and �

(6)
20 � 1=2529 where (�; �v) = (1:85; 1:62), rL1may

reach � 2:651. For increased phase-lag accuracy one may set �5 = �7 = 0 to �nd (�; �v) = (0:29; 0:96) or

may set �5 = �6 = 0 to �nd (�; �v) = (0:35; 0:89). Minimizing dissipation error with �6 = �8 = 0 results

in �
(5)
9 = 1=128, �

(6)
20 = 1=1152, and (�; �v) = (1:94; 1:09). With A(5) = 0:002509, RK4(3)6[2R+]Pf4,9g is

such a scheme. Both RK4(3)6[2R+]C and RK4(3)6[2R+]Pf4,9g use an embedded method with �̂
(4)
4 = 1=26

and �̂(5)
9 = 1=150.

3.6. Nine-Stage, Fifth-Order: RK5(4)9[2R+]. A �fth-order, 2R-vdH scheme may be obtained in

nine stages by solving the 17 unsimpli�ed equations of condition, � (k) = 0; k = 1; 2; � � � ; 5, for the 17 free

Butcher coe�cients. Solution properties cannot be optimized. Over 800 distinct real roots to this system

of equations have been found. The most accurate root found, RK5(4)9[2R+]M, has A(6) = 0:0006172, but

(�; �v) = (0:21; 1:03). The most stable method, RK5(4)9[2R+]S, has A(6) = 0:001014, (�; �v) = (1:78; 1:59),

and (�̂; �̂v) = (1:60; 1:61). A compromise solution, RK5(4)9[2R+]C, was found with A(6) = 0:0008209,

(�; �v) = (1:05; 1:29), and (�̂; �̂v) = (1:63; 1:15). An embedded method was designed for the three schemes

by satisfying all eight fourth-order constraints plus setting �̂
(5)
9 = 1=135. These methods are presented in

Tables 1 and 6. Stability diagrams are provided in Figure 3.1. The largest linear positivity radius for these

RK5(4)9 methods appears to be rL1� 4:095 occuring at �(6)
20 � 1=779, �(7)

48 � 1=7444, �(8)
115 � 1=121935,

�
(9)
286 � 1=4494000, where (�; �v) = (0:34; 2:24).

4. Three-Register Schemes. Applications having slightly less stringent memory constraints may add
an additional storage register per ODE. Extending the vdH methodology to three-registers, an s-stage scheme
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takes the Butcher array form

0

c2 a21

c3 a31 a32

.

.

. b1 a42 a43

.

.

. b2 a53 a54

.

.

.

.
.
.

.
.
.

.
.
.

cs bs�3 as;s�2 as;s�1

b1 b2 � � � bs�3 bs�2 bs�1 bs

where there are now (3s � 3) independent coe�cients that may be used to satisfy particular conditions.

Alternatively, (s� 2) � (s � 3)=2 coe�cients are lost to low storage.

4.1. Three-Stage, Third-Order: RK3()3[3R]. Any three-stage, third-order ERK method may be

implemented in 3R format. As such, one may seek the method having the smallest principal error norm.

By setting @A(4)=@c2 = 0 and @A(4)=@c3 = 0 from the two-parameter family of solutions it is found that

c2 � 73459324
147952825

, c3 � 245463752
326524211

, A(4) = 0:041809, and (rF2 , rF1) = (0:894; 0:0). The relation of c2 and c3 to the

various other Butcher coe�cients may be found in the literature.[9, 21, 35, 54] Stability limits are identical

to the RK3(2)3[2R+] methods. Maximal contractivity, rF1= rF2 = 1, is found in Fehlberg's[26, 52, 74]

method with c2 = 1, c3 = 1=2, and A(4) = 0:07217, while for Cooper's scheme[15] in an inner product norm

where (rF2 , rF1) = (1:215; 0:691), c2 � 270=251, c3 � 166=305, and A(4) = 0:07221.

4.2. Four-Stage, Third-Order: RK3(2)4[3R+]. Kraaijevanger[52] has shown that optimizing the

radius of maximum norm contractivity for general third-order ERKs allows one to obtain rF1= (s � 2)

for s = 3; 4. For s � 5, rF1� (s � p
s). A family of third-order schemes given by four unique Butcher

coe�cients, bi = (s�2)=(s(s�1)); i = 1; 2; � � � ; (s�1), bs = 2=s, aij = 1=(s�2); i = 2; 3; � � � ; (s�1) > j,

asj = 1=(2(s � 1)); j = 1; 2; � � � ; (s � 1), which for s = 3; 4 constitute the maximally L1 contractive

methods. From these relations it is seen that cs�1 = 1 and cs = 1=2. For s = 5, 6, 7, and 8 one �nds for

this family that (rF2 , rF1) is given by (2:449; 2:202), (2:828; 2:347), (3:162; 2:460), and (3:464; 2:553). For

reduced storage we set b1 = (s � 2)=(s(s � 1)) = as1 = 1=(2(s � 1)) to �nd s = 4. The resulting method,

RK3(2)4[3R+]N, is essentially given by Kraaijevanger with rF1= rF2 = rL1= rL2 = 2 and A(4) = 0:03608.

A good embedded method for this scheme is b̂i = f8; 9; 8; 60g=85.
4.3. Four-Stage, Fourth-Order: RK4()4[3R]. From the general solution to the four-stage, fourth-

order ERK scheme,[9, 21, 35] it is found that there is a one-parameter family of 3R solutions and three

speci�c solutions. The one-parameter family of solutions is given by

c3 =
(20� 50c2 + 36c22)�

p
(�20 + 50c2 � 36c22)

2 � 4(9� 26c2 + 16c22)(16� 36c2 + 36c22)

2(16� 36c2 + 36c22)
;(4.1)

where 0; c2; c3; 1 are all distinct, c2 6= 1=2, 3� 4(c2 � c3) + 6c2c3 6= 0, and c3 is not complex. The principal

error norm is minimized by setting @A(5)=@c2 = 0 where RK4()4[3R]M is found for the plus solution with

c2 � 79947400
181010101, rF2 = 0:718, and A(5) = 0:01263. Maximal rF2 = 0:882 occurs with the plus solution

RK4()4[3R]N at c2 � 1612
3517 (with A(5) = 0:01319) for 3R methods and rF2 = 1:144 for Cooper's[15] RK4()4

method. These values compare with rF2 = 1 and A(5) = 0:01450 for the \classical Runge-Kutta" (see

Butcher[9], x313) and A(5) = 0:011977 for the absolute minimum principal error norm for any four-stage,

fourth-order, ERK scheme. Kraaijevanger[52] has shown that there exists no L1 contractive RK4()4 method.

Adding a third-order embedded scheme to this method is impossible unless FSAL techniques are used but
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we do not pursue this matter. Instead of a FSAL pair, complete use of the �fth stage generally makes for

more e�cient schemes. One potential exception is inviscid stability e�ciency (�=s � 0:355). The three other

speci�c cases are found using Butcher's cases 3, 4, and 5 in x312.[9] In case 3, b3 = �2=15 and A(5) = 0:03416,

in case 4, b4 = 3=10 and A(5) = 0:02330, while in case 5, c2 = 3=7 and A(5) = 0:01282. None of these last

three schemes is contractive. Linear stability limits on the convection-di�usion equation for the RK4()4[3R]

are (�; �v) = (1:42; 0:70), rL1= 1, and rL2 = 1:393.

4.4. Five-Stage, Fourth-Order: RK4(3)5[3R+]. Three additional degrees of freedom a�orded

by adding a third register to the RK4(3)5[2R+] method may be put to good use. Optimizing accuracy,

RK4(3)5[3R+]M has A(5) = 0:001884 and (�; �v) = (0:22; 0:81) where �
(5)
3;9 = 0. A similar method of

Prince has �
(5)
4;6;8;9 = 0. A balance between linear stability and low error is found in RK4(3)5[3R+]C with

A(5) = 0:003859 and (�; �v) = (1:67; 1:17). It should be noted that for the RK4(3)5[3R+]C, selection of

�(5)
9 = 1=200 forces A(5) � 0:003333, as can be seen from A

(5)
1 . Contractivity appears to be maximized with

RK4(3)5[3R+]N having (rF2 , rF1) =(0:995; 0:477), A
(5) = 0:004587, and (�; �v) = (1:67; 1:20). Although

not nearly as contractive as Kraaijevanger's RK4()5 scheme, it has 7% better �(acc). Each of these three

schemes is presented in Tables 2 and 5. Stability plots are given in Figure 4.1. Two highly accurate

RK4(3)5[3R+]Pf4,7g schemes where �
(5)
9 = 1=144 and (�; �v) = (1:74; 0:89)were found with A(5) = 0:002658

and A(5) = 0:002857, but neither would accept an embedded method with a reasonably large linear stability

region.

4.5. Six-Stage, Fifth-Order: RK5()6[3R]. With only 15 degrees of freedom simplifying assumption

D(1) may be invoked to reduce the number of condition equations from 17 to 15. By doing so, a fourth-

order embedded scheme is no longer possible. At least 13 schemes like this exist; the most accurate found,

RK5()6[3R]M, has A(6) = 0:003678 with (�; �v) = (0:20; 0:72).

4.6. Seven-Stage, Fifth-Order: RK5(4)7[3R+]. To get a 5(4) pair, a seventh stage is added and

only simplifying assumption C(2) is utilized. This results in 18 equations in 18 unknowns for the main

scheme and 7 equations in 7 unknowns for the embedded method. Of the 7 schemes found, the best one is

RK5(4)7[3R+]M with A(6) = 0:002213, (�; �v) = (0:28; 0:92), (�̂; �̂v) = (0:95; 0:59), and B(6) < 1:0. Adding

an extra stage to this method, however, can lead to a method with as much as 38% better �(acc), as will

be shown in section 4.7. Maximum rL1� 2:654 occurs at �
(6)
20 � 1=955, �

(7)
48 � 1=17733 with (�; �v) =

(0:28; 1:60).

4.7. Eight-Stage, Fifth-Order -RK5(4)8[3R+]. An eight-stage, three-register vdH scheme has 21

degrees of freedom. Seeking a 5(4) pair, Butcher simplifying assumption C(2) is applied. The resulting

system of equations necessary to satisfy all order conditions is

�
(k)
1 = 0; k = 1; 2; � � � ; 5;

Ps

j=1 aijcj = c2i =2; i = 3; 4; � � � ; 8;

�
(4)
3 = �

(5)
4;5;8 = b2 =

Ps

i=3 biai2 =
Ps

i=3 biciai2 =
Ps

i;j=3 biaijaj2 = 0;
(4.2)

for the main scheme and

�̂
(k)
1 = 0; k = 1; 2; 3; 4; b̂2 = �̂

(4)
3 =

sX

i=3

b̂iai2 = 0;(4.3)

for the embedded scheme. Optimization may now be done with two remaining DOF in the main method

and one in the embedded method. A numerical search found two low-error solution families (among 25 or

so), the �rst with more desirable stability properties and the second having lower A(6). RK5(4)8[3R+]C,

13



RK5(4)8[3R+]Pf8,7g, and RK5(4)8[3R+]M are given in Tables 2 and 6. The �rst two come from the more

stable family. RK5(4)8[3R+]C has A(6) = 0:0008306 with (�; �v) = (1:30; 1:52) while RK5(4)8[3R+]Pf8,7g

has A(6) = 0:0007923 with (�; �v) = (1:01; 1:20). RK5(4)8[3R+]M achieves A(6) = 0:0003240, but (�; �v) =

(0:32; 1:00). The �nal degree of freedom for the embedded methods is used to set �̂
(5)
9 = 1=130; 1=135; 1=122:5

in the RK5(4)8[3R+]C, P, M schemes, respectively. Stability plots for the three schemes are shown in Figure

4.1.

Enhanced dispersion/dissipation order is enforced with

�
(6)
20 = (1 + 2268�

(8)
115)=756 �

(7)
48 = (1 + 22680�

(8)
115)=7560 (�7 = �9 = 0);

�
(6)
20 = 1=720 �

(7)
48 = (1 + 5760�

(8)
115)=5760 (�6 = �8 = 0);

�
(6)
20 = 1=720 �

(7)
48 = 1=5040 (�6 = �7 = 0):

(4.4)

With the RK5(4)8[3R+]M solution family, the methods RK5(4)8[3R+]PMf10,5g, RK5(4)8[3R+]PMf8,7g,

and RK5(4)8[3R+]PMf6,9gmay be found having A(6) = 0:0005049, 0:0005946, and 0:0005525, and (�; �v) =

(0:35; 1:14), (0:88; 0:98), and (0:53; 1:04), respectively. Each may be �tted with a high-quality embedded

method by setting �̂
(5)
9 = 1=130. In each of these methods, D < 2, B(6); C(6) < 1:5 and E(6) < 0:5. The

largest possible rL1 for RK5(4)8 schemes is found at �
(6)
20 � 1=834, �

(7)
48 � 1=9862, �

(8)
115 � 1=266413 where

rL1� 3:368 and (�; �v) = (0:30; 1:89).

5. Four-Register Schemes. Further relaxing the memory constraints, the 4R-vdH scheme structure
appears as
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.
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.
.
.

cs bs�4 as;s�3 as;s�2 as;s�1

b1 b2 � � � bs�4 bs�3 bs�2 bs�1 bs

and has (4s� 6) DOF. Storage reduction has consumed (s � 3) � (s � 4)=2 of them.

5.1. Four-Stage, Fourth-Order: RK4()4[4R]. In cases where the number of stages equals the

number of available storage registers, all possible schemes may be implemented in sR-vdH fashion. For

the four-stage, fourth-order ERK, we solve for the minimum error scheme. Setting @A(5)=@c2 = 0 and

@A(5)=@c3 = 0, results in c2 �
63753230
178211381, c3 �

131894393
222986851, A

(5) = 0:0119775, and rF2
= 0:613. The relation

between the various other Butcher coe�cients may be found in the literature.[9, 21, 35] Stability limits are

(�; �v) = (1:42; 0:70). Again, a third-order embedded method is impossible with this scheme without FSAL

constructs. Maximal inner product norm contractivity occurs with Cooper's RK4()4 scheme at c2 �
7723
13798

and c3 �
6075
13798

where rF2
= 1:14373 and A(5) = 0:01755. Gottlieb and Shu[31] use Butcher's[9] case 2 in

x312, setting b3 =
7873
30000

to get A(5) = 0:01592 and rF2
= 0:945. In all RK4()4 cases rF1= 0, rL1= 1, and

rL2 = 1:393.

5.2. Five-Stage, Fourth-Order: RK4(3)5[4R+]. An RK4(3)5[4R+] method has 14 DOF, having

sacri�ced only 1 DOF to low storage. To minimize A(5), Butcher simplifying assumptions C(2) and D(1)

are applied, reducing the constraint system to

�
(k)
1 = 0; k = 1; 2; 3; 4; c5 = 1; �

(5)
4 = "; b2 =

Ps

i=3 biciai2 = 0;
Ps

j=1 aijcj = c2i =2; i = 3; 4;
Ps

i=1 biaij = bj(1� cj); i = 2; 3; 4:
(5.1)
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An exact one-parameter, c4, solution has been found where A(5) may be made arbitrarily small. For " = 0,

A(5) =
p
103=1036800(c4 � 1). Unfortunately, both b4 and b5 are proportional to (c4 � 1)�1, a so-called

limiting formula. As c4 ! 1,D = b4 = � [12(c4 � 1)c4(5c4 � 2)]�1. Setting " = �1=40000 and c4 = 199=200,

RK4(3)5[4R+]M has A(5) = 0:00003216, A(6)=A(5) = 130:3, and D = 6:365.

To obtain a contractive RK4(3)5[4R+] scheme, we closely follow Kraaijevanger[52] with the excep-

tion of not enforcing (a51� rF1a54a41). Note that we solved 15 equations (8 order conditions and 7 of

his 8 contractivity conditions) in 15 unknowns whereas Kraaijevanger performed an optimization problem.

Kraaijevanger's RK4()5 method has A(5) = 0:006439, (�; �v) = (1:64; 1:34), and (rL2 , rL1 , rF2
, rF1)

= (2:191; 1:861;1:835;1:508). The RK4(3)5[4R+]N method has A(5) = 0:005635, (�; �v) = (1:63; 1:40), and

(rF2
, rF1) = (1:733; 1:095). We mention that a good embedded method may be added to Kraaijevanger's

RK4()5 scheme by solving the four third-order embedded order conditions, linear in the b̂i's, by setting

b̂5 = 113=599. Coe�cients and properties of the two RK4(3)5[4R+] methods are listed in Tables 3 and 5.

Stability plots are given in Figure 5.1.

5.3. Six-Stage, Fifth-Order: RK5(4)6[4R+]. By increasing the stage count to six, a 5(4) pair may

be considered with Butcher simplifying assumption C(3). The general RK5(4)6[4R+] method has 18 DOF

in the main scheme and 6 DOF in the embedded method. Of the nine main schemes found, the best scheme

has A(6) = 0:001961 and (�; �v) = (0:28; 0:99). A more ambitious agenda uses only simplifying assumption

C(2) while enforcing a condition on ai2. To do this we solve

�
(k)
1 = 0; k = 1; 2; � � � ; 5;

Ps

j=1 aijcj = c2i=2; i = 3; 4; 5; 6; �
(4)
3 = �

(5)
4;5;8 = 0;

b2 =
Ps

i=3 biai2 =
Ps

i=3 biciai2 =
Ps

i;j=3 biaijaj2 = 0; a42 =
c3(3c4�12c24+10c34)
2c2(3�12c3+10c23)

;
(5.2)

for the main scheme and

�̂
(k)
1 = 0; k = 1; 2; 3; 4; b̂2 = 0; �(5)

9 = 1=130:(5.3)

for the embedded method. Note that the strategies described by Papakostas et al.[60] and Hairer et al.[35]

(xII.5) must be modi�ed slightly. Tables 3 and 6 show RK5(4)6[4R+]M having A(6) = 0:0009449 and

(�; �v) = (0:31; 0:93). A stability diagram for this scheme is given in Figure 5.1. With �
(6)
20 = 1=1440,

rL1reaches 2 for the RK5(4)6 method. A FSAL method akin to those of Dormand et al.[19, 20] and

Papakostas et al.[60] is not considered.

5.4. Seven-Stage, Fifth-Order - RK5(4)7[4R+]. A seven-stage, 5(4) pair may be approached in

at least four ways: using C(2), C(3), C(2) and D(1), or C(3) and D(1). To satisfy all �fth-order constraints,

these require 18, 20, 18, and 21 DOF, respectively. For sixth-order these increase to 30, 28, 24, and 25. In

addition, use of C(3) reduces the number of embedded order conditions. The simplest approach is to use C(3)

and D(1). Setting �
(6)
6 � 2� 10�6, a solution was found having A(6) = 0:0003974 and (�; �v) = (0:30; 0:87).

With only C(3), a somewhat better solution has A(6) = 0:0003649 and (�; �v) = (0:32; 0:89).

To decrease A(6) further, only C(2) is assumed. Using a FSAL method allows the main scheme to be

designed independently of the embedded method. For �fth order in the main method,

�
(k)
1 = 0; k = 1; 2; 3; 4;5; �

(4)
3 = �

(5)
4;5;8 = 0;

b2 =
Ps

i=3 biai2 =
Ps

i=3 biciai2 =
Ps

i;j=3 biaijaj2 = 0;
Ps

j=1 aijcj = c2i =2; i = 3; 4; 5; 6; 7;
(5.4)

and for the fourth-order embedded method,

�̂
(k)
1 = 0; k = 1; 2; 3; 4; b̂2 =

sX

i=3

b̂iai2 = �̂
(4)
3 = 0:(5.5)

15



The remaining degrees of freedom are chosen so that �
(6)
1;7 = 0, � (6)6 � �7:8 � 10�7, � (6)20 � �1 � 10�6,

and �̂
(5)
9 = 1=125. The resulting method, RK5(4)8[4R+]FM, has �

(6)
1;2;3;7;11;12 = 0, A(6) = 0:00003256,

A(7) = 0:0002906, A(8) = 0:0004815, A(9) = 0:0005800, (�; �v) = (0:99; 0:98), and (�̂; �̂v) = (1:27; 0:81).

Details of the method are found in Tables 3 and 6, and the stability characteristics are shown in Figure 5.1.

For phase-lag methods, which we do not pursue, select (�7 = �9 = 0) by setting �(6)
20 = 1=756 and

�
(7)
48 = 1=7560 [(�; �v) = (0:36; 1:16)], (�6 = �7 = 0) by setting �

(6)
20 = 1=720 and �

(7)
48 = 1=5040 [(�; �v) =

(0:88; 0:99)], or (�6 = �8 = 0) by placing �
(6)
20 = 1=720 and �

(7)
48 = 1=5760 [(�; �v) = (0:53; 1:05)]. Note that

RK5(4)8[4R+]FM has �6 � �7 � 0.

6. Five-Register Schemes. With �ve registers, the Butcher array is given by
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cs bs�5 as;s�4 as;s�3 as;s�2 as;s�1

b1 b2 � � � bs�5 bs�4 bs�3 bs�2 bs�1 bs

and allows (5s � 10) degrees of freedom while having forfeited (s � 4)(s � 5)=2.

6.1. Seven-Stage, Fifth-Order: RK5(4)7[5R+]. A seven-stage, �ve-register, 5(4) pair may be

approached as if it were a 6(4) pair. Both pairs C(2), D(1) and C(3), D(1) enable a sixth-order main

method that requires 24 and 25 DOF, respectively. We will follow the strategy of Sharp and Smart[72] and

Bogacki and Shampine[6] by solving for the sixth-order method and then will pollute it ever so slightly. For

a sixth-order main method with C(3) and D(1) we enforce

�
(k)
1 = 0; k = 1; 2; 3; 4; 5;6; b2 = �

(6)
6 =

Ps

i=3 biciai2 =
Ps

i=3 bic
2
i ai2 =

Ps

i;j=3 biciaijaj2 = 0;
Ps

j=1 aijc
q�1
j = cqi=q; i = 3; 4; 5; 6; q = 2; 3;

Ps

i=1 biaij = bj(1� cj); j = 2; 3; 4; 5; 6; c7 = 1;
(6.1)

and for the fourth-order embedded method,

�
(k)
1 = 0; k = 1; 2; 3; 4; b2 =

Ps

i=3 biai2 = 0; �̂
(5)
9 = 1=125:(6.2)

Interestingly, in spite of the nonlinearity in the bi's, b7 = 1=12. Setting �
(6)
1 = 2�10�5, �

(6)
6 =

Ps

i=3 bic
2
i ai2 =Ps

i;j=3 biciaijaj2 = 5�10�7, all 20 � (6)i are nearly equally corrupted. The resulting method, RK5(4)7[5R+]M,

has A(6) = 0:000008959, A(7) = 0:0005771, A(8) = 0:0008997, A(9) = 0:001007, A(7)=A(6) = 64:42, (�; �v) =

(0:92; 0:99), and (�̂; �̂v) = (1:05; 1:19). Tables 3 and 6 and Figure 6.1 display this scheme.

7. Discussion. In the pursuit of reduced-storage integrators for application to the DNS of compressible

ow �elds, we present 16 di�erent ERK schemes. Schemes vary from third to �fth order in accuracy and

use from two to �ve registers of memory per equation per grid point, not including memory used for error

monitoring/controlling. Schemes have been optimized for accuracy and stability e�ciency, linear stability,

nonlinear stability, dispersion/dissipation error, error control reliability, and step control stability, all under

the constraint of reduced memory usage. All presented schemes have been tested by using DETEST,[23] by

simulating the one-dimensional inviscid wave equation, and by computing standard quanti�able properties of

the Butcher coe�cients, as well as using two of the methods in large scale DNS runs. For comparison purposes
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we have chosen to contrast our third-order schemes to that of Sharp and Smart[73][SS-RK3(2)4], fourth-order

schemes to that of Prince,[21][P-RK4(3)5], and �fth-order methods to those of Bogacki and Shampine,[6]

[BS-RK5(4)7], Sharp and Smart,[72] [SS-RK5(4)7], Dormand and Prince,[19] [DOPRI5-RK5(4)7FM], and

Papakostas and Papageorgiou,[60] [PP-RK5(4)7F]. These reference methods have been chosen because they

appear to be the best available full-storage methods within their respective classes. The memory requirement

of these full-storage methods is not less than the stage number for non-FSAL methods or the e�ective number

of stages for FSAL methods.

All schemes presented in this paper have been designed, at a minimum, to avoid any obvious problems.

As is usual in the design of ERK methods, great emphasis is placed on reducing A(q+1) to as low as possible.

DETEST results are well correlated with this measure. DETEST runs involve 25 separate integrations (A1-

E5) in 5 general catagories (A-E). Error is computed by taking the geometric mean of the worst performances

in each of the 5 catagories by using the PI-controller. A(q+2) may sometimes be seen to a�ect scheme

performance at lax tolerances. Embedded \quality" parameters B(p+2), C(p+2), and E(p+2) of the low-

storage schemes are generally quite reasonable, and embedded linear stability domains are commensurate

with their main methods. The largest Butcher coe�cient, D, never exceeds 7 in any low-storage method

and for most schemes is near unity. In addition, none of the low-storage methods have defective embedded

methods.

Reduced-storage, third-order schemes appear to forfeit little relative to corresponding full-storage schemes.

At 3 stages, linear stability is identical among all schemes. Accuracy-based e�ciency may be brought to

99% of the maximum achievable with RK3(2)3[2R+]M. Nonlinear stability may be made equal to 84% of

Fehlberg's three-stage, third-order method with RK3(2)3[2R+]N while simultaneously requiring 9% less

work for similar error tolerances. High quality embedded methods are easily added to these schemes.

Adding a fourth stage to a 3(2) pair appears to lead to 6% higher �(acc) with RK3(2)4[2R+]C relative

to RK3(2)3[2R+]M. Inviscid stability e�ciency also jumps from �=s = 0:290 to �=s = 0:355. If accuracy or

inviscid stability e�ciency is a priority, this scheme is the best third-order method presented and behaves

similarly to the 3(2) pair of Sharp and Smart [SS-RK3(2)4]. E�ciencies of these last two methods may be

seen in Figure 7.1, a comparison of third- and fourth-order methods using DETEST, as well as in Table 4.

Viscous stability e�ciency and contractivity, however, favor the three-stage 3(2) pairs, �v=s = 0:210 versus

�v=s = 0:175. RK3(2)3[2R+]N has rF1/s = 0:279, compared to rF1/s = 0:252 for RK3(2)4[2R+]CN, while

also being 16% more accuracy e�cient. Where contractivity is the primary concern, RK3(2)4[3R+]N nearly

doubles the normalized contractivity radius of Fehlberg's RK3(2)3 method (rF1/s = 0:333), while still only

using 3 registers. The price of achieving rF1/s = 0:500 is relatively poor �(acc), 77% of SS-RK3(2)4.

A quick survey of existing third-order methods includes several reduced storage methods by Carpenter

and Kennedy,[11, 12] Williamson[87], and Wray[90]. Neither the original Williamson nor Wray schemes has

an embedded method; they have accuracy e�ciencies within 0:1% of each other. Of the two methods given

by Carpenter and Kennedy, both Williamson-type schemes, one is clearly the most accurate third-order

scheme given in Table 4 but has no error control capabilites, an easily recti�able matter, while the other

sacri�ces e�ciency to achieve an embedded method with no storage penalty. Bogacki and Shampine[5] have

clearly improved upon Fehlberg's two 3(2), or 2(3), pairs but the method of Sharp and Smart appears to be

the best full-storage 3(2) pair.

Comparing RK4(3)5[2R+]C with the third-order schemes, the fourth-order method is generally not

only more stability e�cient, but a DETEST comparison of all 2R+ methods, given in Figure 7.2, shows

that it can achieve moderate error tolerances at a small fraction of the work needed by the lower order
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methods. RK4(3)5[2R+]C seems the more prudent choice over any 3(2) pair for all tolerances below � 10�1.

Contractivity aside, RK4(3)5[2R+]C is quite a bargain.

Optimizing within fourth-order methods may take many directions, with RK4(3)5[2R+]C serving as a

good reference. Figures 7.1 and 7.3 show DETEST results on the relative e�ciencies of all fourth-order

schemes and of all three register methods. Table 5 shows that adding a third register, in principle, allows for

a 6% increase in e�ciency with RK4(3)5[3R+]C. Using RK4(3)5[2R+]C or RK4(3)5[3R+]C enables �=s =

0:334 and �v=s � 0:238. Where accuracy but not stability e�ciencies are most important, RK4(3)5[3R+]M

and RK4(3)5[4R+]M are 22% and 176%more e�cient according to Table 5. It may be seen in Figure 7.1 that

those numbers are not achieved until quite tight tolerances are reached. DETEST results of 4R+ methods,

Figure 7.4, show that RK4(3)5[4R+]M is as e�cient as RK5(4)6[4R+]M, whose �(acc) is 62%, to tolerances

of � 10�8! RK4(3)5[4R+]M is acting like a �fth-order method having an �(acc) of 58% as determined by

comparing A(6). Both of these 4(3) \M" methods compare favorably with the best contemporary full-storage

4(3) pair of Prince.[21] Maximum norm contractivity of fourth-order methods, on a per stage basis, o�ers

slightly less possibility than third-order methods. Kraaijevanger's RK4()5 method is the most contractive

RK4()5 with rF1/s = 0:302, a bit less than Fehlberg's rF1/s = 0:333. This reduction is particularly

noticeable when additional requirements like low-storage are imposed. With four registers, at least rF1/s

= 0:219 is possible, but this result is likely reduced to rF1/s = 0:095 at three registers. These results, along

with the fact that contractive ERKs do not exist at �fth order, suggest that there is a trade-o� between

contractivity and order of accuracy. This trade-o� may not be so unfortunate because the linear positivity

radius, rL1 , remains substantial for many high-order methods and it is likely that the perceived need for

large rF1values is partially attributable to poor temporal error control. Gottlieb and Shu[31] compare two

second-order methods and �nd that the noncontractive method, although it has 43.85 times the principal

error norm of the contractive method performs less well. We inspect existing 4(3) pairs and avoid the

methods of Fehlberg[26] and Merson[35] because they have defective embedded schemes when used in local

extrapolation mode. Neither Zonneveld's method[35] nor N�rsett's method[22] are particularly e�cient even

with full storage. The former method may also have an unreliable error estimate on inviscid problems at

lax tolerances. Even though Stanescu and Habashi[77] o�er a 2N method, it lacks both error control and

e�ciency. In the event that overwriting of the U -vector is not possible, the RK4()5[2N]Cmethod of Carpenter

and Kennedy,[11] �tted with an embedded method, would be preferable to RK4(3)5[2R+]C because the 2N

method is 4% more e�cient. Compared to Prince's RK4(3)5 method, RK4(3)5[3R+]M is largely the same

yet uses only three registers, while RK4(3)5[4R+]M is substantially more e�cient.

The burden of low storage becomes apparent relative to corresponding contemporary pairs at �fth order

because of the large number of forsaken degrees of freedom as well as the large amount of research that has

gone into optimizing existing 5(4) pairs. This burden may easily be seen in Figure 7.5, a DETEST comparison

of �fth-order methods. Optimization of lower order methods would seem to have taken a back seat to those

�fth order and higher for reasons of e�ciency. In order to achieve �fth order in 2 registers and 9 stages,

28 DOF are sacri�ced! Not surprisingly, �(acc) of 41-45% relative to BS-RK5(4)7 is seen in Table 6. This

relative ine�ciency makes the RK5(4)9[2R+] methods clearly more e�cient than the RK4(3)5[2R+]C only

at tolerances of � 10�5 to 10�6, and DETEST shows both RK4(3)5[3R+]M and RK4(3)5[4R+]M to always

be more e�cient. To their defense, the RK5(4)9[2R+] methods have been derived with no residual DOF for

optimization purposes, used no simplifying assumptions, and by virtue of the low-storage strategy, the order

conditions became horribly nonlinear in the bi's. The brighter side of the relatively high stage number is that

stability e�ciency can be quite high for 5(4) pairs. We hasten to add that if stability e�ciency is desired
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then RK4(3)5[2R+]C should be accurate enough while allowing for much larger time steps. Accepting a

third register in a �fth-order method allows for accuracy e�ciencies to move from 41-45% of BS-RK5(4)7 to

48-56%, while stability e�ciencies stay the same or decline. For acoustic applications, RK5(4)8[3R+]Pf8,7g

o�ers high dispersion and dissipation accuracy on the linear problemwhile sacri�cing nothing on the nonlinear

problem. When comparing 3R+ schemes, for \M" and \C" methods, �fth-order methods appear to be more

e�cient than fourth-order methods for tolerances less than � 10�3 to 10�4. Comparing RK5(4)8[3R+]C

to the RK5(4)7FC and RK5(4)7FS methods of Dormand and Prince,[19, 20] Table 6 indicates that the

low-storage method is nearly as accuracy e�cient and viscous stability e�cient while being more stability

e�cient on inviscid problems. In this case, the penalty of low-storage is relatively small. One of the surprises

in designing low-storage methods was �nding b3 = b4 = 0 in the RK5(4)8[3R+] methods as well as the

RK5(4)7[3R+] method. There are also many other cases of unexpected linear dependencies. We suspect

that there is an interesting reason behind the order conditions when certain aij = bj, but a theory eludes us.

Adding a fourth register to a �fth-order method allows for e�ciencies that approach more traditional

schemes. For RK5(4)6 schemes, RK5(4)6[4R+]M is arguably better than both of Fehlberg's methods[26] and

that of Dormand and Prince[19] in spite of the loss of three DOF to low storage. The most accurate RK5(4)6

published seems to be that of Papakostas and Papageorgiou with A(6) = 0:0008694, 1:4% better �(acc) than

RK5(4)6[4R+]M (A(6) = 0:0009449). Sharp[70] o�ers two RK5(4)6M methods, with A(6) = 0:0009399

and A(6) = 0:0009775. He also states that the global minima for RK5(4)6 schemes is A(6) = 0:00087,

consistent with what Papakostas and Papageorgiou have presented. A FSAL method based on RK5(4)6[4R+]

type schemes has not been pursued. Moving to seven-stage methods, RK5(4)8[4R+]FM is our only FSAL

method. With A(6) = 0:00003256, Table 6 suggests that it is 30% more accuracy e�cient than the DOPRI5.

E�ciencies based on A(7), A(8), and A(9) are even more encouraging. The schemes are would be expected

to perform similarly to compared to Sharp and Smart [SS-RK5(4)7]. Papakostas and Papageorgiou recently

designed an extremely accurate 5(4) pair [PP-RK5(4)7F] with 6 e�ective stages. As with the DOPRI5,

the disadvantage of this approach relative to fully seven-stage methods is the relatively high values of A(7)

and D, and relatively poor linear stability. On paper, the best 5(4) pair appears to be the Bogacki and

Shampine [BS-RK5(4)7]. DETEST results show that RK5(4)8[4R+]FM performs as well as or better than

SS-RK5(4)7, PP-RK5(4)7F, DOPRI5, or BS-RK5(4)7 while saving two to three registers of memory. These

results are slightly controller dependent. The threshold for switching from fourth- to �fth-order 4R+ \M"

methods (RK4(3)5[4R+]M and RK5(4)8[4R+]FM) appears to be � 10�3.

The �ve-register 5(4) pair RK5(4)7[5R+] is considered to address any �(acc) or A(6) shortfall of the

2R, 3R, and 4R 5(4) pairs relative to existing methods. Designing 5(4) methods based on a sixth-order

main scheme has been done, �rst by Sharp and Smart [SS-RK5(4)7] and later by Bogacki and Shampine

[BS-RK5(4)7], as well as a q(q � 2)-pair by Tsitouras and Papakostas[82] [TP-RK6(4)7]. For the 5(4) pairs

A(6) may be set rather arbitrarily, and for these methods A(6) is given by 0:9, 7:1, 2:2, and 0:0(� 10�5),

respectively. What may be a better measure of the accuracy of these methods is A(7). In the same order,

A(7) for these methods is 5:8, 1:8, 2:1, and 2:1 (� 10�4). Our DETEST results show RK5(4)7[5R+] per-

forming better than DOPRI5, the same as SS-RK5(4)7, and worse than BS-RK5(4)7, PP-RK5(4)7F, and

RK5(4)8[4R+]FM.

It is important to consider the bene�ts of additional registers so that these bene�ts may be weighed

against the cost of the additional memory usage. At fourth order, switching from RK4(3)5[2R+]C to

RK4(3)5[3R+]C nets a 6% e�ciency gain. For \M" schemes, RK4(3)5[4R+]M is 126% more e�cient

than RK4(3)5[3R+]M in Table 6. Maximum norm contractivity radius increases 130% by going from
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RK4(3)5[3R+]N to RK4(3)5[4R+]N, with an attendant 4% loss in accuracy e�ciency. With �fth-order

schemes, moving from RK5(4)9[2R+]C to RK5(4)8[3R+]C yields a 12% e�ciency gain. Adding registers

to RK5(4)9[2R+]M gives a 25% gain with RK5(4)8[3R+]M, 110% with RK5(4)8[4R+]FM, and 160% with

RK5(4)7[5R+]M.

Below �fth order there does not appear to be a compelling reason to use full-storage methods. At �fth

order, users must establish the cost of memory relative to CPU time to establish the optimal methods. On

parallel machines, low-storage methods may enjoy some advantage because of less required communication.

When su�cient memory is available and �fth-order accuracy is required, RK5(4)8[4R+]FM is essentially

as good as BS-RK5(4)7, SS-RK5(4)7, PP-RK5(4)7F, and RK5(4)7[5R+]M. Low-storage methods will also

be relatively more valuable when the number of equations becomes large (i.e. many species). The value

increases because the storage required of the integrator is directly proportional to the number of integration

variables yet storage for items like grid metrics is not.

Stability plots show that step-control stability is enhanced by switching from an I-controller to a PI-

controller in all of the methods presented as well as the reference methods. Whereas with the I-controller

schemes are predominantly SC-unstable on their linear stability boundaries, they are predominantly SC-

stable with the PI-controller. When methods are SC-unstable with the PI-controller, it is often at either

the real axis (viscous) or at the imaginary axis (inviscid), or both. Some room for optimization for each

of the methods is possible via � and �. Doing this optimization requires some caution because it is not

su�cient in the design of a good controller for each of the eigensolutions to be damped. The time constants

associated with these eigensolutions must not be too large or too small. We do not pursue this optimization.

Possibly a PID-controller could �nd use in certain DNS runs. Coping with SC-instability is probably best

accomplished by reducing step sizes. In cases where A(q+2)=A(q+1) � 1, a PI-controller was found to make

error control more reliable. Surprisingly, RK4(3)5[4R+]M with A(6)=A(5) = 130 was reliable on DETEST

with both I- and PI-controllers. In most cases DETEST was able to run at more lax tolerances with the

PI-controller than the I-controller. All low-storage schemes were able to run at tolerances as lax as 10�1

to 10�2, except RK4(3)5[3R+]M, which would not run above 10�2:5 with the PI-controller. BS-RK5(4)7

had the worst behavior in this regard, possibly because R(z) and R̂(z) are so similar. With the I-controller,

DOPRI5, BS-RK5(4)7, and RK5(4)7[5R+]M, especially the last two, had di�culty at lax tolerances.

Linear advection of information along characteristics is often used as a model problem for studying

the hyperbolic limit of the Navier-Stokes equations. An extremely di�cult test case is the advection of

information over long distances, because it tests both the spatial and temporal resolving capabilities of a

scheme. We formulate this test problem with the model equation @U=@t + @U=@x = 0, solved on the interval

�50 � x � 450. The initial and exact solutions are given by the expression U (x; t) = 1
2 exp[�(

x�t

3 )
2
]. The

exact solution is a wave packet of energy, spread over an interval approximately six units wide, moving with

unit velocity in time. Note that this test case has information content at all wavenumbers. The spatial

discretization of the �rst-derivative operator is done with a sixth-order compact operator, known to have

adequate spatial resolving capability. The boundary conditions are imposed to ensure that no order reduction

occurs.[13]

Figure 7.6 shows linear advection results, obtained with four temporal operators at three spatial res-

olutions. The logarithm of the global error is plotted as a function of the work. We assume that the

spatial resolution dictates the desired accuracy level in the calculation, and that spatial and temporal error

components should be approximately equal. Note that as the time-step is decreased (increasing work), all

formulations asymptote to a uniform error that corresponds to the spatial operator component. At coarse
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error tolerances (six grid points resolving the wave packet), the CFL condition (temporal stability constraint)

of all schemes produces temporal and spatial error components that are nearly matched. The �fth-order

schemes have no apparent advantage over the fourth-order formulations. At moderate and �ne error toler-

ances (12 and 24 four points), the �fth-order formulations become more e�cient. The larger CFL condition

of the fourth-order scheme allows a larger time step, but produces inadequate temporal resolutions.

To choose a scheme for a DNS run, all of this information must be sorted. First must be established

the relative cost of memory to CPU time in relation to the CPU and memory requirements of the run.

The next step is to establish whether the simulation will be more stability bound or accuracy bound.

Stability bound simulations favor \C" or \S" methods and the 4(3) pairs. For accuracy bound problems,

\M" methods are probably best, and 5(4) pairs for tighter tolerances. For runs where nonlinear stability is

deemed important, \N" methods should be used. Acoustic or temporally periodic problems might best use

\P" methods. Ultimately, �(acc) and �(stab) are the most important quantities. DETEST quanti�es �(acc)

nicely, independent of order-of-accuracy, while �=s and �v=s quantify �(stab) well. An interesting strategy

for users may be to choose an acceptable number of registers and then switch between methods of the same

storage requirements. For instance, at three registers one could use RK4(3)5[3R+]C when stability dictates

the time step and then switch to RK5(4)8[3R+]C as accuracy becomes more important. When accuracy

is paramount RK5(4)8[3R+]M could be used. On stability dominated problems, the general shape of the

stability domain in terms of (�; �v) may be loosely inferred from the stability plots in terms of z. For the

sixth-order, tridiagonal derivative operator, the axes on the stability plots may be replaced with =(z)=2 � �

and �<(z)=4 � �v. This guideline can be misleading at the imaginary axis. What tolerance should be

used for a DNS run? Given the second sentence in the introduction to this paper, atleast 10�3 would seem

appropriate. This value also depends on the spatial tolerance, as well as the demands of the phenomena we

are attempting to resolve. Lax spatial tolerances will negate tight temporal error tolerances.

It is also useful to consider the e�ects of simplifying assumptions. Experience in the literature[60]

suggests that the best schemes are found by using the minimum number of simplifying assumptions. Our

experience with RK5(4)6[4R+] and RK5(4)7[4R+] shows that as long as the embedded method can be

designed, using C(2) will reduce A(6) substantially over C(3). Assumption D(1) did not appear to have as

dramatic an e�ect. Judging from RK5(4)8[4R+]FM, it is not unreasonable to think that both BS-RK5(4)7

and RK5(4)7[5R+]M could be improved upon slightly by using only C(2). RK5(4)8[3R+] methods are not

possible using C(3). RK5(4)s[2R+] methods have been designed in 9 stages with no simplifying assumptions

but would require 10 with D(1) and 12 with C(2). Adding an extra stage to the minimumnumber necessary

for a q(p) pair also appears to be bene�cial.[72]

To demonstrate the usefulness of the methods, both RK4(3)5[2R+]C and RK5(4)9[2R+]S have been

applied to the DNS of a heated, planar, compressible air jet as well as to methane-air, methanol-air, and

hydrogen-air ames. We remark that these choices were made long before many of the other schemes

here were created. In the case of the jet, observing sound generation from the ow�eld might be useful.

Detecting this sound is nontrivial numerically and requires selection of a variable that noticably manifests

acoustic waves traversing the media. Figure 7.7 shows the volumetric acceleration in this jet ow and the

sound waves coming o� the jet column and leaving the vortical structures.

Considering an in�nitesimal, spherical material volume element, dV , the volumetric acceleration is given

by (3=dr)(D2dr=Dt2) where dr is the in�nitesimal radius of the sphere. Figures 7.8 and 7.9 show the

corresponding vortical and temperature �elds.

An important question in each simulation is at what tolerance does the order-reduction from boundary
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error show itself. Users seeking tight tolerances would be well advised to consult the literature for known

solutions to this problem. It may be that hybrid step-controllers similar to the PI- and PID-controllers in

combination with those for q(q�2) pairs[82] could add reliability. It would also be very useful to establish the

stability contours that correspond to rF1 , rF2
, and rL1 , because comparing rL2 to the region of jR(z)j = 1

shows that rL2 is terribly conservative. It grossly underestimates stability on hyperbolic problems. Two of

these contours would require determining the absolute monotonicity of a polynomial, R(z) or K(z), with a

complex argument.

8. Conclusions. The derivation of low-storage, explicit Runge-Kutta (ERK) schemes has been per-

formed in the context of integrating the compressible Navier-Stokes equations via direct numerical simulation

(DNS). Unlike previous derivations of ERK schemes which focus on only a few characteristics, we attempt to

optimize methods across a broad range of properties, subject to varying degrees of memory economization.

With a storage reduction methodology introduced by van der Houwen and Wray, schemes are optimized for

stability and accuracy e�ciency, linear and nonlinear stability, error control reliability, step change stability,

and dissipation/dispersion accuracy. The methods in this paper may be reasonably expected to span the

range of needs for compressible DNS when numerical sti�ness is not an issue.

Sixteen ERK pairs are presented using from two to �ve registers of memory per equation, per grid

point, and having accuracies from 3(2) to 5(4). All schemes have high-quality error controllers and generally

exhibit step change stability when used with a PI-controller. Methods have been tested by means of not

only DETEST, but also the 1D wave equation. Two of the methods have been applied to the DNS of a

compressible heated jet as well as methane-air and hydrogen-air ames. Derived 3(2) and 4(3) pairs, where

few degrees of freedom are sacri�ced for low storage, are competitive with existing full-storage methods.

Generally, 4(3) pairs are more accuracy and stability e�cient than 3(2) pairs. When stability e�ciency is

paramount, certain 4(3) pairs are best. For accuracy limited problems, 5(4) pairs are more e�cient than

4(3) pairs as tolerances drop below 10�3 to 10�5. The transition error tolerance for this switching depends

on how many registers are being considered. Although a substantial e�ciency penalty accompanies use

of 2R and 3R �fth-order methods because of the enormous number of forfeited degrees of freedom, state-

of-the-art full-storage methods can be nearly matched while still saving two to three registers of memory.

Ultimately, the data presented here should help users determine which method is most appropriate based

on the properties most valued and the relative cost of the CPU time to memory usage. Users will need to

decide which properties are most valued, make a determination of the relative cost of CPU time to memory,

and then choose the appropriate method.
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Appendix A. Implementation of the van der Houwen scheme.

A.1. Two registers. We now consider the details of implementing a �ve-stage explicit Runge-Kutta

method with the van der Houwen methodology for the integration of

dU

dt
= F (t; U (t));(A1)

from time step n to time step n + 1 with only two storage registers. It is understood that U be comprises

R variables . Third and fourth registers may be used to store an error estimator and the starting U -

vector. Assume register 1 (R1) contains the U -vector at time t(n) = t(1), U (n) = U (1). The function

F (U (n); t(n)) = F (n) = F (1) is evaluated and the result is placed in register 2 (R2). We now perform the

operations (error estimation and retention of U (n) are optional)

Rold = R1

Rerr = (b1 � b̂1)(�t)R2

R1 = R1 + a21(�t)R2

R2 = R1 + (b1 � a21)(�t)R2;(A2)

which translate to

Rold = U (n)

Rerr = (b1 � b̂1)(�t)F (n)

U (2) = U (n) + a21(�t)F (n)

X(2) = U (2) + (b1 � a21)(�t)F (n)

= U (n) + b1(�t)F (n);(A3)

where the X-vector is an intermediate vector that is used to pass information from one stage to the next.

Boundary conditions for the U (i)-vector are evaluated at t(i) = t(n) + ci(�t). This constitutes the end of

stage 1. The function is now evaluated with the contents of R1 and the result is then overwritten onto R1.

With this we compute

Rerr = Rerr + (b2 � b̂2)(�t)R1

R2 = R2 + a32(�t)R1

R1 = R2 + (b2 � a32)(�t)R1;(A4)

or

Rerr = Rerr + (b2 � b̂2)(�t)F (2)

= (b2 � b̂2)(�t)F (2) + (b1 � b̂1)(�t)F (n)

U (3) = X(2) + a32(�t)F (2)

= U (n) + a32(�t)F (2) + b1(�t)F (n)

X(3) = U (3) + (b2 � a32)(�t)F (2)

= U (n) + b2(�t)F (2) + b1(�t)F (n):(A5)
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Stage two is complete. Stage 3 begins with the evaluation of the function with the contents of R2. Overwriting

the contents of R2, U (3), with the result of the function evaluation, F (3),

Rerr = Rerr + (b3 � b̂3)(�t)R2

R1 = R1 + a43(�t)R2

R2 = R1 + (b3 � a43)(�t)R2;(A6)

giving

Rerr = Rerr + (b3 � b̂3)(�t)F (3)

= (b3 � b̂3)(�t)F (3) + (b2 � b̂2)(�t)F (2) + (b1 � b̂1)(�t)F (n)

U (4) = X(3) + a43(�t)F (3)

= U (n) + a43(�t)F (3) + b2(�t)F (2) + b1(�t)F (n)

X(4) = U (4) + (b3 � a43)(�t)F (3)

= U (n) + b3(�t)F (3) + b2(�t)F (2) + b1(�t)F (n):(A7)

To begin stage 4, the function is now evaluated with the contents of R1 and the result is then overwritten

into R1. Hence,

Rerr = Rerr + (b4 � b̂4)(�t)R1

R2 = R2 + a54(�t)R1

R1 = R2 + (b4 � a54)(�t)R1;(A8)

or

Rerr = Rerr + (b4 � b̂4)(�t)F (4)

= (b4 � b̂4)(�t)F (4) + (b3 � b̂3)(�t)F (3)

+ (b2 � b̂2)(�t)F (2) + (b1 � b̂1)(�t)F (n)

U (5) = X(4) + a54(�t)F (4)

= U (n) + a54(�t)F (4) + b3(�t)F (3) + b2(�t)F (2) + b1(�t)F (n)

X(5) = U (5) + (b4 � a54)(�t)F (4)

= U (n) + b4(�t)F (4) + b3(�t)F (3) + b2(�t)F (2) + b1(�t)F (n):(A9)

Stage four is �nished. On the �nal stage, stage 5, the evaluation of the function is done with the contents of

R2. Overwriting the contents of R2 with the result of the function evaluation, we �nally arrive at

Rerr = Rerr + (b5 � b̂5)(�t)R2

R1 = R1 + b5(�t)R2;(A10)

or

Rerr = Rerr + (b5 � b̂5)(�t)F (5)

= (b5 � b̂5)(�t)F (5) + (b4 � b̂4)(�t)F (4) + (b3 � b̂3)(�t)F (3)

+ (b2 � b̂2)(�t)F (2) + (b1 � b̂1)(�t)F (n)
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U (n+1) = X(5) + b5(�t)F (5)

= U (n) + b5(�t)F (5) + b4(�t)F (4) + b3(�t)F (3) + b2(�t)F (2) + b1(�t)F (n);

(A11)

where t(n+1) = t(n)+(�t). It may be desirable to write U (n+1) back into the register that contained U (n) at

the beginning of the time step in cases where the scheme has an even number of stages. If a FSAL scheme

is being used, then U (n+1) is used to compute F (n+1) and

Rerr = Rerr + (0� b̂6)(�t)R1(A12)

or

Rerr = Rerr + (0� b̂6)(�t)F (n+1)

= (0� b̂6)(�t)F (n+1) + (b5 � b̂5)(�t)F (5) + (b4 � b̂4)(�t)F (4)

+ (b3 � b̂3)(�t)F (3) + (b2 � b̂2)(�t)F (2) + (b1 � b̂1)(�t)F (n):(A13)

Note that register one has F (n+1) and that if the step is accepted then F (n+1) = F (1) in the new step. To

control solution error in a vdH scheme, �rst some appropriate solution error tolerance is chosen, � � 10�3

to 10�5. Then one may determine the (�t)(n+1) based on either the I- or PI- step controller. If U (n+1) and

Û (n+1) are computed to q = (p + 1)-th and p-th order accuracy, respectively, then we may de�ne �(n+1) at

time n+1 as �(n+1) = U (n+1)� Û (n+1) = Rerr. Then �(n+1) is a local truncation error estimate for the lower

order formula. It is also wise to place a limit on how quickly the time step is allowed to increase, factors of

between 2 and 5 being the maximum.[69]

A unique problem of the vdH schemes is that if Rold is not employed, then when a step size is taken

that exceeds the error tolerance it is too late to correct matters. In this case, more conservative values of

the \safety factor" � might be advised. Normally � = 0:9 is chosen, but this might be reduced slightly here.

Alternatively, the error tolerance, �, could be reduced so that any transgressions of the reduced tolerance

might not be a transgression of the original tolerance. It should also be remembered that this procedure

makes no sense if the U -vector is not normalized in some way so that meaningful comparisons may be made

between, say, the energy equation and the momentum equations. A possible choice would be

�(n+1)� =
�(n+1)

U (n+1)
(A14)

in cases where jU (n+1)j is greater than, say, 10�8 (depending on machine precision), and where �(n+1)�

replaces �(n+1) in Eq. (2.15) or (2.16).

A.2. Three registers. Extending the vdH concept to allow for three available storage registers for

a �ve-stage, non-FSAL ERK scheme, our discussion follows directly from the 2R case but is more terse.

Assume register 1 (R1) contains U (n) at time t(n). The function, F (n), is evaluated and the result is placed

in register 3 (R3). We now perform the operations

Rold = R1

Rerr = (b1 � b̂1)(�t)R3

R1 = R1 + a21(�t)R3

R2 = R1 + (b1 � a21)(�t)R3;(A15)
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Rerr = Rerr + (b2 � b̂2)(�t)R1

R2 = R2 + a32(�t)R1 + (a31 � b1)(�t)R3

R3 = R2 + (b2 � a32)(�t)R1 + (b1 � a31)(�t)R3;(A16)

Rerr = Rerr + (b3 � b̂3)(�t)R2

R3 = R3 + a43(�t)R2 + (a42 � b2)(�t)R1

R1 = R3 + (b3 � a43)(�t)R2 + (b2 � a42)(�t)R1;(A17)

Rerr = Rerr + (b4 � b̂4)(�t)R3

R1 = R1 + a54(�t)R3 + (a53 � b3)(�t)R2

R2 = R1 + (b4 � a54)(�t)R3 + (b3 � a53)(�t)R2;(A18)

Rerr = Rerr + (b5 � b̂5)(�t)R1

R2 = R2 + b5(�t)R1:(A19)

A.3. Four registers.

Rold = R1

Rerr = (b1 � b̂1)(�t)R4

R1 = R1 + a21(�t)R4

R2 = R1 + (b1 � a21)(�t)R4(A20)

Rerr = Rerr + (b2 � b̂2)(�t)R1

R2 = R2 + a32(�t)R1 + (a31 � b1)(�t)R4

R3 = R2 + (b2 � a32)(�t)R1 + (b1 � a31)(�t)R4(A21)

Rerr = Rerr + (b3 � b̂3)(�t)R2

R3 = R3 + a43(�t)R2 + (a42 � b2)(�t)R1 + (a41 � b1)(�t)R4

R4 = R3 + (b3 � a43)(�t)R2 + (b2 � a42)(�t)R1 + (b1 � a41)(�t)R4(A22)

Rerr = Rerr + (b4 � b̂4)(�t)R2

R4 = R4 + a54(�t)R3 + (a53 � b3)(�t)R2 + (a52 � b2)(�t)R1

R1 = R4 + (b4 � a54)(�t)R3 + (b3 � a53)(�t)R2 + (b2 � a52)(�t)R1(A23)

Rerr = Rerr + (b5 � b̂5)(�t)R4

R1 = R1 + b5(�t)R4(A24)
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A.4. Five registers.

Rold = R1

Rerr = (b1 � b̂1)(�t)R5

R1 = R1 + a21(�t)R5

R2 = R1 + (b1 � a21)(�t)R5(A25)

Rerr = Rerr + (b2 � b̂2)(�t)R1

R2 = R2 + a32(�t)R1 + (a31 � b1)(�t)R5

R3 = R2 + (b2 � a32)(�t)R1 + (b1 � a31)(�t)R5(A26)

Rerr = Rerr + (b3 � b̂3)(�t)R2

R3 = R3 + a43(�t)R2 + (a42 � b2)(�t)R1 + (a41 � b1)(�t)R5

R4 = R3 + (b3 � a43)(�t)R2 + (b2 � a42)(�t)R1 + (b1 � a41)(�t)R5(A27)

Rerr = Rerr + (b4 � b̂4)(�t)R2

R4 = R4 + a54(�t)R3 + (a53 � b3)(�t)R2 + (a52 � b2)(�t)R1 + (a51 � b1)(�t)R5

R5 = R4 + (b4 � a54)(�t)R3 + (b3 � a53)(�t)R2 + (b2 � a52)(�t)R1 + (b1 � a51)(�t)R5

(A28)

Rerr = Rerr + (b5 � b̂5)(�t)R4

R5 = R5 + b5(�t)R4:(A29)
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Appendix B. Explicit Runge-Kutta Order Conditions.

Equations of conditions[19] for various orders of accuracy are are found in many places, e.g., x3.4[21].

Higher order conditions may be derived by using ButcherMath found in Mathematica.[88, 89] To provide

completeness in this work, up to sixth order, these conditions given by
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Verner[86] divides these order conditions into four general categories; quadrature �
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3;5;9;12. Several higher-order \tall-tree" conditions of constraint, important in the design of

linear stability, are given by
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Table 1: Two-register ERK schemes

RK3(2)4[2R+]C RK4(3)5[2R+]C RK5(4)9[2R+]S RK5(4)9[2R+]C RK5(4)9[2R+]M

a21 + 11847461282814

36547543011857
+ 970286171893

4311952581923
+ 1107026461565

5417078080134
+ 2756167973529

16886029417639
+ 5573095071601

11304125995793

a32 + 3943225443063

7078155732230
+ 6584761158862

12103376702013
+ 38141181049399

41724347789894
+ 11436141375279

13592993952163
+ 315581365608

4729744040249

a43 �

346793006927

4029903576067
+ 2251764453980

15575788980749
+ 493273079041

11940823631197
+ 88551658327

2352971381260
+ 8734064225157

30508564569118

a54 - + 26877169314380

34165994151039
+ 1851571280403

6147804934346
+ 1882111988787

5590444193957
+ 6457785058448

14982850401353

a65 - - + 11782306865191

62590030070788
+ 846820081679

4754706910573
+ 5771559441664

18187997215013

a76 - - + 9452544825720

13648368537481
+ 4475289710031

6420120086209
+ 1906712129266

6681214991155

a87 - - + 4435885630781

26285702406235
+ 1183947748311

9144450320350
+ 311585568784

2369973437185

a98 - - + 2357909744247

11371140753790
+ 3307377157135

13111544596386
�

4840285693886

7758383361725

b1 + 1017324711453

9774461848756
+ 1153189308089

22510343858157
+ 2274579626619

23610510767302
+ 1051460336009

14326298067773
+ 549666665015

5899839355879

b2 + 8237718856693

13685301971492
+ 1772645290293

4653164025191
+ 693987741272

12394497460941
+ 930517604889

7067438519321
�

548816778320

9402908589133

b3 + 57731312506979

19404895981398
�

1672844663538

4480602732383
�

347131529483

15096185902911
�

311910530565

11769786407153
+ 1672704946363

13015471661974

b4 �

101169746363290

37734290219643
+ 2114624349019

3568978502595
+ 1144057200723

32081666971178
�

410144036239

7045999268647
+ 1025420337373

5970204766762

b5 - + 5198255086312

14908931495163
+ 1562491064753

11797114684756
+ 16692278975653

83604524739127
+ 1524419752016

6755273790179

b6 - - + 13113619727965

44346030145118
+ 3777666801280

13181243438959
�

10259399787359

43440802207630

b7 - - + 393957816125

7825732611452
+ 286682614203

12966190094317
+ 4242280279850

10722460893763

b8 - - + 720647959663

6565743875477
+ 3296161604512

22629905347183
+ 1887552771913

6099058196803

b9 - - + 3559252274877

14424734981077
+ 2993490409874

13266828321767
�

453873186647

15285235680030

b̂1 + 15763415370699

46270243929542
+ 1016888040809

7410784769900
+ 266888888871

3040372307578
+ 3189770262221

35077884776239
+ 330911065672

9937126492277

b̂2 + 514528521746

5659431552419
+ 11231460423587

58533540763752
+ 34125631160

2973680843661
+ 780043871774

11919681558467
�

872991930418

11147305689291

b̂3 + 27030193851939

9429696342944
�

1563879915014

6823010717585
�

653811289250

9267220972999
�

483824475979

5387739450692
+ 2575378033706

14439313202205

b̂4 �

69544964788955

30262026368149
+ 606302364029

971179775848
+ 323544662297

2461529853637
+ 1306553327038

9528955984871
+ 3046892121673

11013392356255

b̂5 - + 1097981568119

3980877426909
+ 1105885670474

4964345317203
+ 6521106697498

22565577506855
+ 1780184658016

8929499316295

b̂6 - - + 1408484642121

8758221613943
+ 1400555694605

19784728594468
+ 10265149063

2098741126425

b̂7 - - + 1454774750537

11112645198328
+ 1183541508418

13436305181271
+ 1643090076625

4891294770654

b̂8 - - + 772137014323

4386814405182
+ 3036254792728

15493572606329
+ 116106750067

3955800826265

b̂9 - - + 277420604269

1857595682219
+ 638483435745

4187244659458
+ 866868642257

42331321870877
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Table 2: Three-register ERK schemes

RK4(3)5[3R+]C RK4(3)5[3R+]M RK4(3)5[3R+]N RK5(4)8[3R+]C RK5(4)8[3R+]Pf8,7g RK5(4)8[3R+]M

a21 + 2365592473904

8146167614645
+ 17396840518954

49788467287365
+ 4745337637855

22386579876409
+ 141236061735

3636543850841
+ 1298271176151

60748409385661
+ 967290102210

6283494269639

a32 + 4278267785271

6823155464066
+ 21253110367599

14558944785238
+ 6808157035527

13197844641179
+ 7367658691349

25881828075080
+ 14078610000243

41877490110127
+ 852959821520

5603806251467

a43 + 2789585899612

8986505720531
+ 4293647616769

14519312872408
+ 4367509502613

10454198590847
+ 6185269491390

13597512850793
+ 553998884433

1150223130613
+ 8043261511347

8583649637008

a54 + 15310836689591

24358012670437
� 8941886866937

7464816931160
+ 1236962429870

3429868089329
+ 2669739616339

18583622645114
+ 15658478150918

92423611770207
� 115941139189

8015933834062

a65 - - - + 42158992267337

9664249073111
+ 18843935397718

7227975568851
+ 2151445634296

7749920058933

a76 - - - + 970532350048

4459675494195
+ 6206560082614

27846110321329
+ 15619711431787

74684159414562

a87 - - - + 1415616989537

7108576874996
+ 2841125392315

14844217636077
+ 12444295717883

11188327299274

a31 � 722262345248

10870640012513
� 12587430488023

11977319897242
+ 546509042554

9152262712923
� 343061178215

2523150225462
� 2491873887327

11519757507826
+ 475331134681

7396070923784

a42 + 1365858020701

8494387045469
+ 6191878339181

13848262311063
+ 625707605167

5316659119056
� 4057757969325

18246604264081
� 3833614938189

14183712281236
� 8677837986029

16519245648862

a53 + 3819021186

2763618202291
+ 19121624165801

12321025968027
+ 582400652113

7078426004906
+ 1415180642415

13311741862438
+ 628609886693

8177399110319
+ 2224500752467

10812521810777

a64 - - - � 93461894168145

25333855312294
� 4943723744483

2558074780976
+ 1245361422071

3717287139065

a75 - - - + 7285104933991

14106269434317
+ 1024000837540

1998038638351
+ 1652079198131

3788458824028

a86 - - - � 4825949463597

16828400578907
� 2492809296391

9064568868273
� 5225103653628

8584162722535

b1 + 846876320697

6523801458457
+ 1977388745448

17714523675943
+ 314199625218

7198350928319
+ 514862045033

4637360145389
+ 346820227625

3124407780749
+ 83759458317

1018970565139

b2 + 3032295699695

12397907741132
+ 6528140725453

14879534818174
+ 6410344372641

17000082738695
0 0 0

b3 + 612618101729

6534652265123
+ 4395900531415

55649460397719
+ 292278564125

5593752632744
0 0 0

b4 + 1155491934595

2954287928812
+ 6567440254656

15757960182571
+ 5010207514426

21876007855139
0 0 0

b5 + 707644755468

5028292464395
� 436008689643

9453681332953
+ 5597675544274

18784428342765
+ 2561084526938

7959061818733
+ 814249513470

2521483007009
+ 6968891091250

16855527649349

b6 - - - + 4857652849

7350455163355
+ 195246859987

15831935944600
+ 783521911849

8570887289572

b7 - - - + 1059943012790

2822036905401
+ 3570596951509

9788921605312
+ 3686104854613

11232032898210

b8 - - - + 2987336121747

15645656703944
+ 1886338382073

9981671730680
+ 517396786175

6104475356879

b̂1 + 1296459667021

9516889378644
+ 390601394181

3503051559916
+ 1276689330531

10575835502045
+ 1269299456316

16631323494719
+ 679447319381

8240332772531
� 2632078767757

9365288548818

b̂2 + 2599004989233

11990680747819
+ 31150720071161

68604711794052
+ 267542835879

1241767155676
0 0 0

b̂3 + 1882083615375

8481715831096
+ 416927665232

6953044279741
+ 1564039648689

9024646069760
+ 2153976949307

22364028786708
+ 798472430005

13882421602211
+ 138832778584802

30360463697573

b̂4 + 1577862909606

5567358792761
+ 3879867616328

8869216637007
+ 3243722451631

13364844673806
+ 2303038467735

18680122447354
+ 972791992243

13597677393897
+ 7424139574315

5603229049946

b̂5 + 328334985361

2316973589007
� 163749046041

2599987820560
+ 606464709716

2447238536635
+ 7354111305649

15643939971922
+ 2994516937385

6097853295694
� 32993229351515

6883415042289

b̂6 - - - + 768474111281

10081205039574
+ 1424705874463

19211220871144
� 3927384735361

7982454543710

b̂7 - - - + 3439095334143

10786306938509
+ 11199564863291

35136367926059
+ 9224293159931

15708162311543

b̂8 - - - � 3808726110015

23644487528593
� 1307718103703

13694144003901
+ 624338737541

7691046757191
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Table 3: Four- and �ve-register ERK schemes

RK4(3)5[4R+]N RK4(3)5[4R+]M RK5(4)6[4R+]M RK5(4)8[4R+]FM RK5(4)7[5R+]M

a21 + 9435338793489
32856462503258

+ 7142524119
20567653057

+ 1811061732419
6538712036350

+ 319960152914
39034091721739

+ 984894634849
6216792334776

a32 + 6195609865473
14441396468602

+ 20567653057
89550000000

+ 936386506953
6510757757683

+ 16440040368765
7252463661539

+ 984894634849
5526037630912

a43 + 7502925572378
28098850972003 + 7407775

2008982 + 8253430823511
9903985211908 + 1381950791880

6599155371617 + 13256335809797
10977774807827

a54 + 4527781290407
9280887680514

�

4577300
867302297

+ 4157325866175
11306150349782

+ 18466735994895
7394178462407

+ 5386479425293
11045691190948

a65 - - + 3299942024581
13404534943033

+ 2786140924985
14262827431161

�

1717767168952
11602237717369

a76 - - - + 28327099865656
21470840267743

�

10054679524430
10306851287569

a31 + 2934593324920
16923654741811

+ 15198616943
89550000000

+ 968127049827
6993254963231

�

16195115415565
7808461210678

+ 890852251480
14995156510369

a42 + 16352725096886
101421723321009

�

226244183627
80359280000

�

4242729801665
12001587034923

�

1316066362688
10261382634081

�

18544705752398
18426539884027

a53 + 3004243580591
16385320447374 + 33311687500

8703531091 + 1960956671631
3017447659538 �

23893000145797
9614512377075 + 1115398761892

28058504699217

a64 - - + 2088737530132
14638867961951 + 6556893593075

12530787773541 + 5538441135605
13014942352969

a75 - - - �

5015572218207
5719938983072 + 23855853001162

20968156556405

a41 + 390352446067
5989890148791 + 9890667227

80359280000 + 332803037697
7529436905221 + 334167490531

1677017272502 + 1722683259617
5669183367476

a52 + 902830387041
8154716972155 �

20567653057
6979191486 �

19590089343957
51581831082203 + 4579492417936

7930641522963 + 342961171087
6505721096888

a63 - - + 3811366828049
10653298326636

�

2255846922213
30066310003000

�

14472869285404
19736045536601

a74 - - - + 3212719728776
7037340048693 �

8169744035288
5424738459363

a51 - - - - + 762111618422
5198184381557

a62 - - - - + 2896263505307
6364015805096

a73 - - - - + 60049403517654
26787923986853

b1 + 929310922418
8329727308495 + 297809

2384418 + 1437717300581
14622899446031 + 1147876221211

13910763665259 + 1008141064049
9867084721348

b2 + 4343420149496
15735497610667 0 0 0 0

b3 + 885252399220
9490460854667 + 156250000

270591503 + 3070006287879
9321175678070 + 182134362610

9852075053293 + 8222186491841
18352662300888

b4 + 3341719902227
13464012733180 + 5030000

888933 + 2276970273632
7940670647385 + 3396705055007

8495597747463 + 514621697208
8712119383831

b5 + 2131913067577
7868783702050 �

2927
546 �

1056149936631
7427907425983 + 363006049056

22366003978609 + 1808964136873
4546032443428

b6 - - + 2571845656138
6012342010435 + 6078825123673

15200143133108 �

362754645297
3989911846061

b7 - - - + 583593328277
7028929464160 + 599706619333

7161178965783

b̂1 + 2929323122013
17725327880387 + 121286694859

931793198518 + 399352205828
2843676810815 + 2023383632057

26525303340911 + 1633918545125
12016465907206

b̂2 + 4379799101587
35838171763617 0 0 0 0

b̂3 + 2267325134734
9725002913543 + 9680751416357

17201392077364 + 460449895996
4301836608005 + 480990062147

12694528747923 + 5614864639673
10804025076427

b̂4 + 1519467056643
5852430786130 + 6633076090000

1042143269349 + 15965746118666
21690343195681 + 14502014597821

36979005529861 + 229286380958
6920724258831

b̂5 + 3636375423974
16547514622827 �

127961558623
21123456354 �

19281717001664
29911607353389 �

3883966523914
63014133260123 + 5960415897193

14726168927560

b̂6 - - + 5058427127221
7651806618075 + 1643296191892

3432451463915 �

4042532386559
22820216867423

b̂7 - - - + 2576984903812
11692468803935 + 930770261899

11134660916874

b̂8 - - - �

2393889703871
16641202878460 -
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Fig. 3.1. Stability limits of the main and embedded methods for two register schemes, RK3(2)4[2R+]C, RK4(3)5[2R+]C,

RK5(4)9[2R+]C, RK5(4)9[2R+]M, RK5(4)9[2R+]S. Circles denote regions of rL1and rL2 contractivity. Shaded regions

denote locations along the contour jR(z)j = 1 where the methods are SC-stable with either an I- or PI-controller.
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Fig. 4.1. Stability limits of the main and embedded methods for three-register schemes, RK4(3)5[3R+]C, RK4(3)5[3R+]M,

RK4(3)5[3R+]N, RK5(4)8[3R+]C, RK5(4)8[3R+]M, RK5(4)8[3R+]Pf8,7g. Circles denote regions of rF1 , rF2 , rL1 , and

rL2 contractivity. Shaded regions denote locations along the contour jR(z)j = 1 where the methods are SC-stable with either

an I- or PI-controller.
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RK5(4)6[4R+]M, RK5(4)8[4R+]FM. Circles denote regions of rF1 , rF2 , rL1 , and rL2 contractivity. Shaded regions denote

locations along the contour jR(z)j = 1 where the methods are SC-stable with either an I- or PI-controller.
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Fig. 6.1. Stability limits of the main and embedded methods for the �ve-register scheme, RK5(4)7[5R+]M. Circles denote
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SC-stable using either an I- or PI-controller.
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Fig. 7.1. DETEST comparison of 3(2) and 4(3) pairs: low-storage schemes and the reference methods of Sharp and

Smart [SS-RK3(2)4] and Prince [P-RK4(3)5].
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Fig. 7.2. DETEST comparison of two-register schemes.
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Fig. 7.3. DETEST comparison of three-register schemes.
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Fig. 7.4. DETEST comparison of four- and �ve-register schemes.
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Fig. 7.5. DETEST comparison of 5(4) pairs: low-storage schemes and the reference methods of Sharp and Smart [SS-

RK5(4)7], Papakostas and Papageorgiou [PP-RK5(4)7F], Bogacki and Shampine [BS-RK5(4)7], and Dormand and Prince

[DOPRI5-RK5(4)7FM].
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Fig. 7.7. Volumetric acceleration, �[2] = r � a (s�2), for a heated, planar, compressible air jet. The self-similar Majet =

0:95 air jet exhausts into a quiescent body of air. Sound waves are seen emanating from the jet column and vortical region.

47



0 1 2 3 4 5
Meters

-2

-1

0

1

2

M
e

te
rs

22500
17500
12500
7500
2500

-2500
-7500
-12500
-17500
-22500

Fig. 7.8. Vorticity, r� u (s�1), for a heated, planar, compressible air jet. Large instability growth rates of the high

Reynolds number jet give rise to intense regions of vorticity.
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Fig. 7.9. Temperature (�K) for a heated, planar, compressible air jet. The Tjet = 900�K air jet rapidly generates �ner

scale motion due to strong ow instability as it issues into the quiescent T1 = 300�K air. A Kelvin-Helmholtz instability may

be seen in the downstream portion of what remains of the jet column.
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